Hostname: page-component-7dd5485656-glrdx Total loading time: 0 Render date: 2025-10-29T04:21:03.290Z Has data issue: false hasContentIssue false

Jet-noise reduction via streak generation in the nozzle boundary layer

Published online by Cambridge University Press:  28 October 2025

Filipe R. do Amaral*
Affiliation:
Institut Pprime, CNRS–Université de Poitiers–ENSMA, Poitiers 86000, France Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil
Petrônio A.S. Nogueira
Affiliation:
Monash University, Melbourne, VIC 3800, Australia
Igor A. Maia
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil
André V.G. Cavalieri
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil
Peter Jordan
Affiliation:
Institut Pprime, CNRS–Université de Poitiers–ENSMA, Poitiers 86000, France
*
Corresponding author: Filipe R. do Amaral, filipefra@ita.br

Abstract

We study the hydrodynamic and acoustic fields of turbulent jets issuing from nozzles modified by the addition of cylindrical tabs on the inner surface, one diameter upstream of the exit. The tabs are designed to promote significant growth of steady streaks in the nozzle turbulent boundary layer. A baseline smooth nozzle is also studied for comparison. Acoustic measurements are made using an azimuthal array for Mach numbers in the range 0.4 $\leqslant M_{\kern-1pt j} \leqslant$ 0.9. The tabs are found to reduce the emitted sound levels by up to 3 dB/St. In terms of overall sound pressure levels, reductions of up to 3 dB are observed at all measured polar angles in the range 20° $\leqslant \theta \leqslant$ 90°. Time-resolved particle image velocimetry experiments are conducted to measure the three components of velocity for a series of cross-stream planes at $M_{\kern-1pt j} =$ 0.7. A Floquet-based Fourier decomposition is applied for the azimuthally periodic flow field, and spectral proper orthogonal decomposition is then employed to extract coherent structures. Comparison of the structures obtained for nozzles with and without tabs shows an enhancement of the streaky structures by the tabs and a damping of Kelvin–Helmholtz wavepackets. A linear model based on the one-way Navier–Stokes equations is employed to explore the underlying amplification mechanisms and how these are impacted by the tabs. The model reproduces the growth–attenuation mechanism observed in the data, showing that the changes in the mean flow induced by the streaks work to reduce the amplification of the noise-generating coherent structures associated with linear spatial growth mechanisms.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akima, H. 1974 A method of bivariate interpolation and smooth surface fitting based on local procedures. Commun. Acm 17 (1), 1820.10.1145/360767.360779CrossRefGoogle Scholar
Alkislar, M.B., Krothapalli, A. & Butler, G.W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.10.1017/S0022112007005022CrossRefGoogle Scholar
Alva, E., Yuan, Z., Araújo, T.B., Amaral, F.R., Hanifi, A. & Cavalieri, A.V.G. 2023 Reduction of tonal noise of a NACA, 0012 airfoil by roughness elements. AIAA Aviation Forum 2023, 3494.Google Scholar
Amaral, F.R., Hasparyk, B.G., Lebedev, A., Eysseric, D., Cavalieri, A.V.G., Maia, I.A.Jordan, P. 2023 a Jet-noise reduction by streak-generating tabs. In, AIAA Aviation Forum 2023, 4516.Google Scholar
Amaral, F.R., Lebedev, A., Eysseric, D. & Jordan, P. 2023 b Measurements of subsonic elliptical jets and their sound. In, AIAA Aviation Forum 2023, 4288.Google Scholar
Amaral, F.R., Lebedev, A. & Jordan, P. 2023 c Experiments on installed jet noise. In, AIAA Aviation Forum 2023, 3830.Google Scholar
Baqui, Y.B., Agarwal, A., Cavalieri, A.V.G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.10.1017/jfm.2015.322CrossRefGoogle Scholar
Bertolotti, F.P. & Herbert, T. 1991 Analysis of the linear stability of compressible boundary layers using the PSE. Theor. Comput. Fluid Dyn. 3 (2), 117124.10.1007/BF00271620CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech.-B/Fluids 47, 8096.10.1016/j.euromechflu.2014.03.005CrossRefGoogle Scholar
Brès, G.A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T. & Schmidt, O.T. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.10.1017/jfm.2018.476CrossRefGoogle Scholar
Bridges, J. & Brown, C. 2004 Parametric testing of chevrons on single flow hot jets. In 10th AIAA/CEAS aeroacoustics conference, pp. 2824.Google Scholar
Callender, B., Gutmark, E. & Martens, S. 2005 Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA J. 43 (1), 8795.10.2514/1.6150CrossRefGoogle Scholar
Casalino, D., Diozzi, F., Sannino, R. & Paonessa, A. 2008 Aircraft noise reduction technologies: a bibliographic review. Aerosp. Sci. Technol. 12 (1), 117.10.1016/j.ast.2007.10.004CrossRefGoogle Scholar
Cavalieri, A.V.G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.10.1017/jfm.2014.186CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330, 44744492.10.1016/j.jsv.2011.04.007CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.10.1017/jfm.2012.247CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71, 020802020827.10.1115/1.4042736CrossRefGoogle Scholar
Cavalieri, A.V.G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.10.1017/jfm.2013.346CrossRefGoogle Scholar
Crighton, D.G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerosp. Sci. 16 (1), 3196.10.1016/0376-0421(75)90010-XCrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.10.1017/S0022112071001745CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P.Towne, A. 2021 Waves in screeching jets. J. Fluid Mech. 913, A7.10.1017/jfm.2020.1175CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.10.1063/1.861156CrossRefGoogle Scholar
Envia, E. 2002 Fan noise reduction: an overview. Intl J. Aeroacoust. 1 (1), 4364.10.1260/1475472021502668CrossRefGoogle Scholar
Fransson, J.H.M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.10.1063/1.1773493CrossRefGoogle Scholar
Fransson, J.H.M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17 (5), 054110.10.1063/1.1897377CrossRefGoogle Scholar
Fransson, J.H.M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96 (6), 064501.10.1103/PhysRevLett.96.064501CrossRefGoogle ScholarPubMed
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.10.1017/jfm.2011.401CrossRefGoogle Scholar
Guitton, A., Tinney, C., Jordan, P. & Delville, J. 2007 Measurements in a co-axial subsonic jet. In 45th AIAA aerospace sciences meeting and exhibit, pp. 15.Google Scholar
Gustavsson, L.H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.10.1017/S002211209100174XCrossRefGoogle Scholar
Hasparyk, B., Jordan, P., Martini, E. & Lesshafft, L. 2024 The shape of subsonic jet noise. In 30th AIAA/CEAS Aeroacoustics Conference (2024), pp. 3196.Google Scholar
Hasparyk, B.G., Jordan, P., Lesshafft, L., Pickering, E. & Colonius, T. 2023 Two-point measurements on the acoustic field of subsonic turbulent jet. In, AIAA Aviation Forum 2023, 4290.Google Scholar
Herbert, T. 1994 Parabolized stability equations. Special Course Prog. Trans. Model. (AGARD) 793, 134.Google Scholar
Huff, D.L. 2007 Noise reduction technologies for turbofan engines. Tech. Rep. NASA/TM-2007-214495, NASA.Google Scholar
Hultgren, L.S. & Gustavsson, L.H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24 (6), 10001004.10.1063/1.863490CrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323XCrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946CrossRefGoogle Scholar
Jaunet, V., Jordan, P. & Cavalieri, A.V.G. 2017 Two-point coherence of wave packets in turbulent jets. Phys. Rev. Fluids 2 (2), 024604.10.1103/PhysRevFluids.2.024604CrossRefGoogle Scholar
Jimenez-Gonzalez, J.I. & Brancher, P. 2017 Transient energy growth of optimal streaks in parallel round jets. Phys. Fluids 29 (11), 114101.10.1063/1.4986150CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.10.1146/annurev-fluid-011212-140756CrossRefGoogle Scholar
Kaplan, O., Jordan, P., Cavalieri, A.V.G. & Brès, G.A. 2021 Nozzle dynamics and wavepackets in turbulent jets. J. Fluid Mech. 923, A22.10.1017/jfm.2021.566CrossRefGoogle Scholar
Krothapalli, A., King, C. & Strykowski, P. 1993 The role of streamwise vortices on the sound generation of supersonic jets. In 15th Aeroacoustics Conference, pp. 4320.Google Scholar
Lajús, F., Sinha, A., Cavalieri, A., Deschamps, C. & Colonius, T. 2019 Spatial stability analysis of subsonic corrugated jets. J. Fluid Mech. 876, 766791.10.1017/jfm.2019.573CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.10.1017/S0022112080000122CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.10.1063/1.2437238CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4 (6), 063901.10.1103/PhysRevFluids.4.063901CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A: Math., Phys. Engng Sci. 211 (1107), 564587.Google Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and Radio Wave Propagation 166–178.Google Scholar
Lumley, J.L. 1981 Coherent structures in turbulence. In Transition and Turbulence, pp. 215242. Elsevier.10.1016/B978-0-12-493240-1.50017-XCrossRefGoogle Scholar
Maia, I.A., Brès, G., Lesshafft, L. & Jordan, P. 2023 Effect of a flight stream on subsonic turbulent jets. Phys. Rev. Fluids 8, 063902.10.1103/PhysRevFluids.8.063902CrossRefGoogle Scholar
Maia, I.A., Heidt, L., Pickering, E., Colonius, T., Jordan, P. & Brès, G.A. 2024 The effect of flight on a turbulent jet: coherent structure eduction and resolvent analysis. J. Fluid Mech. 985, A21.10.1017/jfm.2024.301CrossRefGoogle Scholar
Marant, M. & Cossu, C. 2018 Influence of optimally amplified streamwise streaks on the Kelvin–Helmholtz instability. J. Fluid Mech. 838, 478500.10.1017/jfm.2017.925CrossRefGoogle Scholar
Marusic, I., Baars, W.J. & Hutchins, N. 2017 Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.10.1103/PhysRevFluids.2.100502CrossRefGoogle Scholar
Michalke, A. 1964 On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19 (4), 543556.10.1017/S0022112064000908CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (3), 521544.10.1017/S0022112065001520CrossRefGoogle Scholar
Mollo-Christensen, E. 1967 Jet noise and shear flow instability seen from an experimenter’s viewpoint. J. Appl. Mech. 34 (1), 17.10.1115/1.3607624CrossRefGoogle Scholar
Nogueira, P.A., Beekman, J., Weightman, J. & Edgington-Mitchell, D.M. 2024 Wavepackets and Streaks in Chevron Jets. In 30th AIAA/CEAS Aeroacoustics Conference (2024), pp. 3415.Google Scholar
Nogueira, P.A., Weightman, J. & Edgington-Mitchell, D.M. 2023 Prediction of wavepackets in elliptical jets using 3D one-way Navier–Stokes equations. AIAA AVIATION, Forum 2023, 3511.Google Scholar
Nogueira, P.A.S. & Cavalieri, A.V.G. 2021 Dynamics of shear-layer coherent structures in a forced wall-bounded flow. J. Fluid Mech. 907, A32.10.1017/jfm.2020.839CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Jordan, P. & Jaunet, V. 2019 Large-scale streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.10.1017/jfm.2019.365CrossRefGoogle Scholar
Nogueira, P.A.S. & Edgington-Mitchell, D.M. 2021 Investigation of supersonic twin-jet coupling using spatial linear stability analysis. J. Fluid Mech. 918, A38.10.1017/jfm.2021.366CrossRefGoogle Scholar
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21 (3), 359364.10.1016/S0142-727X(00)00021-7CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.10.1017/jfm.2020.301CrossRefGoogle Scholar
Pickering, E., Rigas, G., Schmidt, O.T., Sipp, D. & Colonius, T. 2021 a Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.10.1017/jfm.2021.232CrossRefGoogle Scholar
Pickering, E., Towne, A., Jordan, P. & Colonius, T. 2021 b Resolvent-based modeling of turbulent jet noise. J. Acoust. Soc. Am. 150 (4), 24212433.10.1121/10.0006453CrossRefGoogle ScholarPubMed
Pujals, G., Cossu, C. & Depardon, S. 2010 a Forcing large-scale coherent streaks in a zero-pressure-gradient turbulent boundary layer. J. Turbul. 11 (25), 113.10.1080/14685248.2010.494607CrossRefGoogle Scholar
Pujals, G., Depardon, S. & Cossu, C. 2010 b Drag reduction of a 3D bluff body using coherent streamwise streaks. Exp. Fluids 49 (5), 10851094.10.1007/s00348-010-0857-5CrossRefGoogle Scholar
Rigas, G., Pickering, E.M., Schmidt, O.T., Nogueira, P.A., Cavalieri, A.V., Bres, G.A.Colonius, T. 2019 Streaks and coherent structures in jets from round and serrated nozzles. In 25th AIAA/CEAS Aeroacoustics Conference, pp. 2597.Google Scholar
Rodríguez, D., Cavalieri, A.V.G., Colonius, T. & Jordan, P. 2015 A study of linear wavepacket models for subsonic turbulent jets using local eigenmode decomposition of PIV data. Eur. J. Mech. B/Fluids 49, 308321.10.1016/j.euromechflu.2014.03.004CrossRefGoogle Scholar
Saiyed, N. & Bridges, J. 1999 Tabs and mixers for reducing low bypass ratio jet noise. In 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, pp. 1986.Google Scholar
Saiyed, N.H., Mikkelsen, K.L. & Bridges, J.E. 2003 Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 41 (3), 372378.10.2514/2.1986CrossRefGoogle Scholar
Sasaki, K., Cavalieri, A.V.G., Jordan, P., Schmidt, O.T., Colonius, T. & Brès, G.A. 2017 High-frequency wavepackets in turbulent jets. J. Fluid Mech. 830, R2.10.1017/jfm.2017.659CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.10.2514/1.J058809CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brés, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.10.1017/jfm.2018.675CrossRefGoogle Scholar
Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T. 2016 Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 3663.10.1017/jfm.2015.719CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.10.1146/annurev-fluid-122109-160753CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.10.2514/1.J056060CrossRefGoogle Scholar
Tam, C.K. & Zaman, K. 2000 Subsonic jet noise from nonaxisymmetric and tabbed nozzles. AIAA J. 38 (4), 592599.10.2514/2.1029CrossRefGoogle Scholar
Tissot, G., Lajús, F.C., Cavalieri, A.V.G. & Jordan, P. 2017 Wave packets and Orr mechanism in turbulent jets. Phys. Rev. Fluids 2 (9), 093901.10.1103/PhysRevFluids.2.093901CrossRefGoogle Scholar
Towne, A. & Colonius, T. 2015 One-way spatial integration of hyperbolic equations. J. Comput. Phys. 300, 844861.10.1016/j.jcp.2015.08.015CrossRefGoogle Scholar
Towne, A., Rigas, G. & Colonius, T. 2019 A critical assessment of the parabolized stability equations. Theor. Comput. Fluid Dyn. 33 (3), 359382.10.1007/s00162-019-00498-8CrossRefGoogle Scholar
Towne, A., Rigas, G., Kamal, O., Pickering, E. & Colonius, T. 2022 Efficient global resolvent analysis via the one-way Navier–Stokes equations. J. Fluid Mech. 948, A9.10.1017/jfm.2022.647CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.10.1017/jfm.2018.283CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral methods in MATLAB. SIAM.10.1137/1.9780898719598CrossRefGoogle Scholar
Wang, C., Lesshafft, L., Cavalieri, A.V.G. & Jordan, P. 2021 The effect of streaks on the instability of jets. J. Fluid Mech. 910, A14.10.1017/jfm.2020.963CrossRefGoogle Scholar
Weideman, J.A. & Reddy, S.C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. (TOMS) 26 (4), 465519.10.1145/365723.365727CrossRefGoogle Scholar
Welch, P.D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.10.1109/TAU.1967.1161901CrossRefGoogle Scholar
Wernet, M.P. & Bridges, J.E. 2021 Characterization of chevron nozzle performance. Tech. Rep. TM-20210020164, NASA.Google Scholar
Zaman, K.B.M.Q., Bridges, J.E. & Huff, D.L. 2011 Evolution from tabs to chevron technology - a review. Intl J. Aeroacoust. 10 (5–6), 685709.10.1260/1475-472X.10.5-6.685CrossRefGoogle Scholar
Zhu, M. & Towne, A. 2023 Recursive one-way Navier–Stokes equations with PSE-like cost. J. Comput. Phys. 473, 111744.10.1016/j.jcp.2022.111744CrossRefGoogle Scholar