Hostname: page-component-7f64f4797f-9t7q9 Total loading time: 0 Render date: 2025-11-04T18:02:06.536Z Has data issue: false hasContentIssue false

The granular dynamic and flow regime transition of wet granular materials

Published online by Cambridge University Press:  03 November 2025

Guowei Dai
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
Aibing Zhang
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
Yuxiang Hu
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
Wuwei Mao
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
Yu Huang
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
Yunsong Hua
Affiliation:
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
Hui Yang
Affiliation:
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
Jie Zhang
Affiliation:
School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
Hu Zheng*
Affiliation:
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
*
Corresponding author: Hu Zheng, zhenghu@tongji.edu.cn

Abstract

Understanding the flow behaviour of wet granular materials is essential for comprehending the dynamics of numerous geological and physical phenomena, but remains a significant challenge, especially the transition of these flow regimes. In this study, we perform a series of rotating drum experiments to systematically investigate the dynamic observables and flow regimes of wet mono-dispersed particles. Two typical continuous flows including rolling and cascading regimes are identified and analysed, concentrating on the impact of fluid density and rotation speed. The probability density functions of surface angles, $\theta _{\textit{top}}$ and $\theta _{\textit{lo}w\textit{er}}$, reveal distinct patterns for these two flow regimes. A morphological parameter thus proposed, termed angle divergence, is used to characterise the rolling–cascading regime transition quantitatively. By integrating quantitative observables, we construct the flow phase diagram and flow curve to delineate the transition rules governing these regimes. Notably, the resulting nonlinear phase boundary demonstrates that higher fluid densities significantly enhance the likelihood of the system transitioning into the cascading regime. This finding is further supported by corresponding variations in flow fluctuations. Our results provide new insights into the fundamental dynamics of wet granular matter, offering valuable implications for understanding the complex rheology of underwater landslides and related phenomena.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular media: between fluid and solid.10.1017/CBO9781139541008CrossRefGoogle Scholar
Arseni, A.M.G., Monaco De, G., Greco, F. & Maffettone, P.L. 2020 Granular flow in rotating drums through simulations adopting a continuum constitutive equation. Phys. Fluids 32 (9), 093305.10.1063/5.0018694CrossRefGoogle Scholar
Balmforth, N.J. & McElwaine, J.N. 2018 From episodic avalanching to continuous flow in a granular drum. Granul. Matter 20 (3), 52.10.1007/s10035-018-0822-1CrossRefGoogle Scholar
Brewster, R., Grest, G.S. & Levine, A.J. 2009 Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum. Phys. Rev. E 79 (1), 011305.10.1103/PhysRevE.79.011305CrossRefGoogle Scholar
Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. 2006 Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61 (19), 63486360.10.1016/j.ces.2006.05.034CrossRefGoogle Scholar
Chen, Q., Li, R., Xiu, W.Z., Zheng, G. & Yang, H. 2020 Dynamics of irregular particles in the passive layer under the slumping regime. Powder Technol. 372, 3239.10.1016/j.powtec.2020.05.089CrossRefGoogle Scholar
Chen, Y., Suo, S., Dong, M., Zhong, H., Wei, D. & Gan, Y. 2024 Effects of particle density and fluid properties on mono-dispersed granular flows in a rotating drum. Phys. Fluids 36 (10), 103324.10.1063/5.0229006CrossRefGoogle Scholar
Chou, S.H. & Hsiau, S.S. 2012 Dynamic properties of immersed granular matter in different flow regimes in a rotating drum. Powder Technol. 226, 99106.10.1016/j.powtec.2012.04.024CrossRefGoogle Scholar
Chung, Y.-C., Hunt, M.L., Huang, J.-N. & Liao, C.-C. 2024 Experimental investigation into segregation behavior of spherical/non-spherical granular mixtures in a thin rotating drum. Phys. Fluids. 36, 023342.10.1063/5.0190892CrossRefGoogle Scholar
Clavaud, C., Berut, A., Metzger, B. & Forterre, Y. 2017 a Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. USA 114 (20), 51475152.10.1073/pnas.1703926114CrossRefGoogle ScholarPubMed
Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y. 2017 b Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. 114 (20), 51475152.10.1073/pnas.1703926114CrossRefGoogle ScholarPubMed
Daerr, A. & Douady, S. 1999 Two types of avalanche behaviour in granular media. Nature 399 (6733), 241243.10.1038/20392CrossRefGoogle Scholar
Dong, M., Wang, Z., Marks, B., Chen, Y. & Gan, Y. 2023 Partially saturated granular flow in a rotating drum: the role of cohesion. arXiv:2307.09682.10.1063/5.0166241CrossRefGoogle Scholar
Dong, Z.B. & Su, L.J. 2024 Flow regimes and basal normal stresses in rock–ice avalanches by experimental rotating drum tests. Cold Reg. Sci. Technol. 218, 104081.10.1016/j.coldregions.2023.104081CrossRefGoogle Scholar
Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K. & Lambiase, J.J. 2007 The brunei slide: a giant submarine landslide on the north west borneo margin revealed by 3d seismic data. Mar. Geol. 246 (1), 923.10.1016/j.margeo.2007.07.009CrossRefGoogle Scholar
Govender, I. 2016 Granular flows in rotating drums: a rheological perspective. Miner. Eng. 92, 168175.10.1016/j.mineng.2016.03.021CrossRefGoogle Scholar
Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., Berg, K. & Masson, D. 2004 The storegga slide: architecture, geometry and slide development. Mar. Geol. 213 (1–4), 201234.10.1016/j.margeo.2004.10.007CrossRefGoogle Scholar
Henein, H., Brimacombe, J.K. & Watkinson, A.P. 1983 Experimental study of transverse bed motion in rotary kilns. Metall. Trans. B 14 (2), 191205.10.1007/BF02661016CrossRefGoogle Scholar
Hürlimann, M., Coviello, V., Bel, C., Guo, X. & Yin, H.Y. 2019 Debris-flow monitoring and warning: review and examples. Earth-SCI. Rev. 102981.10.1016/j.earscirev.2019.102981CrossRefGoogle Scholar
Jarray, A., Magnanimo, V. & Luding, S. 2019 Wet Granular Flow Control through Liquid Induced Cohesion. Elsevier.10.1016/j.powtec.2018.02.045CrossRefGoogle Scholar
Johnson, B.C. & Campbell, C.S. 2017 Drop height and volume control the mobility of long-runout landslides on the Earth and Mars. Geophys. Res. Lett. 10.1002/2017GL076113CrossRefGoogle Scholar
Johnson, B.C. & Sori, M.M. 2020 Landslide morphology and mobility on ceres controlled by topography. J. Geophys. Res. Planets 125 (12), e2020JE006640.10.1029/2020JE006640CrossRefGoogle Scholar
Kasper, J.H., Magnanimo, V., de, J., Sjoerd, D.M., Beek, A. & Jarray, A. 2021 Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter. Particuology 59, 6475.10.1016/j.partic.2020.12.001CrossRefGoogle Scholar
Kwapinska, M., Saage, G. & Tsotsas, E. 2008 Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technol. 181 (3), 331342.10.1016/j.powtec.2007.05.025CrossRefGoogle Scholar
Li, P., Wang, D., Wu, Y. & Niu, Z. 2021 Experimental study on the collapse of wet granular column in the pendular state. Powder Technol. 393, 357367.10.1016/j.powtec.2021.07.087CrossRefGoogle Scholar
Li, R., Yang, H., Zheng, G. & Sun, Q.C. 2018 Granular avalanches in slumping regime in a 2D rotating drum. Powder Technol. 326, 322326.10.1016/j.powtec.2017.12.032CrossRefGoogle Scholar
Liao, C.C., Hsiau, S.S. & Nien, H.C. 2015 Effects of density ratio, rotation speed, and fill level on density-induced granular streak segregation in a rotating drum. Powder Technol. 284, 514520.10.1016/j.powtec.2015.07.030CrossRefGoogle Scholar
Lucas, A., Mangeney, A. & Ampuero, J.P. 2014 Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat. Commun. 5 (9), 3417.10.1038/ncomms4417CrossRefGoogle ScholarPubMed
Mellmann, J. 2001 The transverse motion of solids in rotating cylinders – forms of motion and transition behaviour. Powder Technol. 118 (3), 251270.10.1016/S0032-5910(00)00402-2CrossRefGoogle Scholar
Niu, W., Zheng, H., Yuan, C., Mao, W. & Huang, Y. 2024 Shear characteristics of granular materials with different friction coefficients based on ring shear test. Granul. Matter 26 (2),  26.10.1007/s10035-024-01398-3CrossRefGoogle Scholar
Ottino, J.M. & Khakhar, D.V. 2001 Fundamental research in heaping, mixing, and segregation of granular materials: challenges and perspectives. Powder Technol. 121 (2–3), 117122.10.1016/S0032-5910(01)00361-8CrossRefGoogle Scholar
Perrin, H., Clavaud, C., Wyart, M., Metzger, B. & Forterre, Y. 2019 Interparticle friction leads to non-monotonic flow curves and hysteresis in viscous suspensions. Phys. Rev. X 9 (3), 031027.Google Scholar
Perrin, H., Wyart, M., Metzger, B. & Forterre, Y. 2021 Nonlocal effects reflect the jamming criticality in frictionless granular flows down inclines. Phys. Rev. L 126, 228002.10.1103/PhysRevLett.126.228002CrossRefGoogle ScholarPubMed
Pouliquen, O. & Forterre, Y. 2001 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.10.1017/S0022112001006796CrossRefGoogle Scholar
Pouliquen, O. & Renaut, N. 1996 Onset of granular flows on an inclined rough surface: dilatancy effects. J. Phys-PARIS. 6 (6), 923935.Google Scholar
Preud’Homme, N., Lumay, G., Vandewalle, N. & Opsomer, E. 2021 Numerical measurement of flow fluctuations to quantify cohesion in granular materials. Phys. Rev. E 104 (6), 064901.10.1103/PhysRevE.104.064901CrossRefGoogle ScholarPubMed
Roland, K., Marisa, C., Palucis, B., Yohannes, K.M. & Hill, 2016 Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. J. Geophys. Res. Earth Surface 121 (2), 415441.Google Scholar
Roman, S., Soulaine, C., Alsaud Abu, M., Moataz, K.A. & Tchelepi, H. 2016 Particle velocimetry analysis of immiscible two-phase flow in micromodels. Adv. Water Res. 95 (sep.), 199211.10.1016/j.advwatres.2015.08.015CrossRefGoogle Scholar
Sarno, L., Carravetta, A., Tai, Y.-C., Martino, R., Papa, M.N. & Kuo, C.Y. 2018 Measuring the velocity fields of granular flows – employment of a multi-pass two-dimensional particle image velocimetry (2D-piv) approach. Adv. Powder Technol. 29, 31073123.10.1016/j.apt.2018.08.014CrossRefGoogle Scholar
Schneider, D., Bartelt, P., Caplan-Auerbach, J., Christen, M., And, C.H. & Mcardell, B.W. 2010 Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J. Geophys. Res. Earth Surface 115 (F04), 026.10.1029/2010JF001734CrossRefGoogle Scholar
Shi, A.N., Yang, G.C., Kwok, C.Y. & Jiang, M.J. 2024 Enhanced mobility of granular avalanches with fractal particle size distributions: insights from discrete element analyses. Earth Planet. Sc. Lett. 642, 118835.10.1016/j.epsl.2024.118835CrossRefGoogle Scholar
Singer, K.N., Mckinnon, W.B., Schenk, P.M. & Moore, J.M. 2012 Massive ice avalanches on iapetus mobilized by friction reduction during flash heating. Nat. Geosci. 5, 574578.10.1038/ngeo1526CrossRefGoogle Scholar
Sun, Y., Zhang, W., An, Y., Liu, Q. & Wang, X. 2021 Experimental investigation of immersed granular collapse in viscous and inertial regimes. Phys. Fluids 33, 103317.10.1063/5.0067485CrossRefGoogle Scholar
Sylvain, C.D.P., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90 (4), 044301.Google Scholar
Tang, H., Lin, B. & Wang, D. 2024 Granular collapse in fluids: dynamics and flow regime identification. Particuology 92, 3041.10.1016/j.partic.2024.04.013CrossRefGoogle Scholar
Tegzes, P., Vicsek, T. & Schiffer, P. 2003 Development of correlations in the dynamics of wet granular avalanches. Phys. Rev. E 67, 051303.10.1103/PhysRevE.67.051303CrossRefGoogle ScholarPubMed
Thielicke, W. & Sonntag, R. 2021 Particle image velocimetry for matlab: accuracy and enhanced algorithms in pivlab. J. Open Res. Software 9 (1), 12.10.5334/jors.334CrossRefGoogle Scholar
Vu, D.C., Amarsid, L., Delenne, J.-Y., Richefeu, V. & Radjai, F. 2024 Rheology and scaling behavior of polyhedral particle flows in rotating drums. Powder Technol. 434, 119338.10.1016/j.powtec.2023.119338CrossRefGoogle Scholar
Wang, C., Wang, Y., Peng, C. & Meng, X. 2017 Dilatancy and compaction effects on the submerged granular column collapse. Phys. Fluids 29 (10), 103307.10.1063/1.4986502CrossRefGoogle Scholar
Wang, F., Dai, Z., Nakahara, Y. & Sonoyama, T. 2018 Experimental study on impact behavior of submarine landslides on undersea communication cables. Ocean Engng. 148, 530537.10.1016/j.oceaneng.2017.11.050CrossRefGoogle Scholar
Wang, W., Barés, J., Barés, J. & Azéma, E. 2024 Flow regimes and repose angle in a rotating drum filled with highly concave particles. Phys. Rev. E 112, 015417.10.1103/lygy-vjljCrossRefGoogle Scholar
Yang, H., Zhang, B.F., Li, R., Zheng, G. & Zivkovic, V. 2017 Particle dynamics in avalanche flow of irregular sand particles in the slumping regime of a rotating drum. Powder Technol. 311, 439448.10.1016/j.powtec.2017.01.064CrossRefGoogle Scholar
Yuan, C., Moscariello, M., Cuomo, S. & Chareyre, B. 2019 Numerical simulation of wetting-induced collapse in partially saturated granular soils. Granul. Matter 21 (3), 64.10.1007/s10035-019-0921-7CrossRefGoogle Scholar
Zheng, H., Dai, G., Mao, W. & Huang, Y. 2023 Rate-dependent weakening of the shear force for the submerged granular medium based on the experimental study. J. Earth Sci. 34 (2), 347353.10.1007/s12583-021-1541-9CrossRefGoogle Scholar
Zhou, G.G.D., Cui, K.F.E., Jing, L., Zhao, T., Song, D. & Huang, Y. 2020 Particle size segregation in granular mass flows with different ambient fluids. J. Geophys. Res. Solid Earth 125 (10), e2020JB019536.10.1029/2020JB019536CrossRefGoogle Scholar