Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-27T22:48:45.524Z Has data issue: false hasContentIssue false

Experimental study of the convection in a thin cylindrical gas layer with imposed bottom and top fluxes and imposed side temperature

Published online by Cambridge University Press:  11 March 2025

F. Rein*
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France IRSN, 13108 St Paul lez Durance, France
L. Carénini
Affiliation:
IRSN, 13108 St Paul lez Durance, France
F. Fichot
Affiliation:
IRSN, 13108 St Paul lez Durance, France
B. Favier
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
M. Le Bars
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
*
Corresponding author: F. Rein, florian.rein@protonmail.com

Abstract

We investigate convection in a thin cylindrical gas layer with an imposed flux at the bottom and a fixed temperature along the side, using a combination of direct numerical simulations and laboratory experiments. The experimental approach allows us to extend by two orders of magnitude the explored range in terms of flux Rayleigh number. We identify a scaling law governing the root-mean-square horizontal velocity and explain it through a dimensional analysis based on heat transport in the turbulent regime. Using particle image velocimetry, we experimentally confirm, for the most turbulent regimes, the presence of a drifting persistent pattern consisting of radial branches, as identified by Rein et al. (2023, J. Fluid Mech. 977, A26). We characterise the angular drift frequency and azimuthal wavenumber of this pattern as functions of the Rayleigh number. The system exhibits a wide distribution of heat flux across various time scales, with the longest fluctuations attributed to the branch pattern and the shortest to turbulent fluctuations. Consequently, the branch pattern must be considered to better forecast important wall heat flux fluctuations, a result of great relevance in the context of nuclear safety, the initial motivation for our study.

JFM classification

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2009 a Transitions in heat transport by turbulent convection at Rayleigh numbers up to $10^{15}$. New J. Phys. 11 (12), 123001.Google Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 b Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.Google Scholar
Akashi, M., Yanagisawa, T., Sakuraba, A., Schindler, F., Horn, S., Vogt, T. & Eckert, S. 2022 Jump rope vortex flow in liquid metal Rayleigh–Bénard convection in a cuboid container of aspect ratio $\gamma =5$. J. Fluid Mech. 932, A27.CrossRefGoogle Scholar
Alboussière, T., Deguen, R. & Melzani, M. 2010 Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466 (7307), 744747.Google ScholarPubMed
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83 (18), 36413644.CrossRefGoogle Scholar
Batchelor, G. 1954 Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q. Appl. Maths 12 (3), 209233.CrossRefGoogle Scholar
Bejan, A. & Tien, C. 1978 Laminar natural convection heat transfer in a horizontal cavity with different end temperatures. J. Heat Transfer 100 (4), 641647.Google Scholar
Bonnet, J. & Seiler, J. 1999 Thermodynamic phenomena in corium pool: the BALI experiment. In Proceedings of ICONE7 Conference.Google Scholar
Carénini, L., Fichot, F. & Seignour, N. 2018 Modelling issues related to molten pool behaviour in case of in-vessel retention strategy. Ann. Nucl. Energy 118, 363374.CrossRefGoogle Scholar
Carénini, L., Fleurot, J. & Fichot, F. 2014 Validation of ASTEC V2 models for the behaviour of corium in the vessel lower head. Nucl. Engng Des. 272, 152162.CrossRefGoogle Scholar
Chapman, C. & Proctor, M. 1980 Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101 (4), 759782.Google Scholar
Chapman, S. & Cowling, T.G. 1991 The Mathematical Theory of Non-uniform Gases. Cambridge Mathematical Library.Google Scholar
Chatelard, P., et al. 2014 ASTEC V2 severe accident integral code main features, current v2.0 modelling status, perspectives. Nucl. Engng Des. 272, 119135.CrossRefGoogle Scholar
Cheng, J., Mohammad, I., Wang, B., Keogh, D., Forer, J. & Kelley, D. 2022 Oscillations of the large-scale circulation in experimental liquid metal convection at aspect ratios 1.4–3. J. Fluid Mech. 949, A42.Google Scholar
Churchill, S. & Chu, H. 1975 Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transfer 18 (11), 13231329.Google Scholar
Cierpka, C., Kästner, C., Resagk, C. & Schumacher, J. 2019 On the challenges for reliable measurements of convection in large aspect ratio Rayleigh–Bénard cells in air and sulfur-hexafluoride. Exp. Therm. Fluid Sci. 109, 109841.CrossRefGoogle Scholar
Deville, M., Fischer, P. & Mund, E. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.Google Scholar
Dorel, V., Le Gal, P. & Le Bars, M. 2023 Experimental study of the penetrative convection in gases. Phys. Rev. Fluids 8 (10), 103501.Google Scholar
Fantuzzi, G. 2018 Bounds for Rayleigh–Bénard convection between free-slip boundaries with an imposed heat flux. J. Fluid Mech. 837, R5.Google Scholar
Favier, B., Purseed, J. & Duchemin, L. 2019 Rayleigh–Bénard convection with a melting boundary. J. Fluid Mech. 858, 437473.CrossRefGoogle Scholar
Fischer, P. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84101.Google Scholar
Fischer, P. & Mullen, J. 2001 Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris I 332 (3), 265270.CrossRefGoogle Scholar
Fragnito, A., Bianco, N., Iasiello, M., Mauro, G. & Mongibello, L. 2022 Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage. J. Energy Storage 56, 105975.CrossRefGoogle Scholar
Fujii, T. & Imura, H. 1972 Natural-convection heat transfer from a plate with arbitrary inclination. Int. J. Heat Mass Transfer 15 (4), 755767.CrossRefGoogle Scholar
Gasteuil, Y., Shew, W., Gibert, M., Chillá, F., Castaing, B. & Pinton, J.-F. 2007 Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh–Bénard convection. Phys. Rev. Lett. 99 (23), 234302.CrossRefGoogle ScholarPubMed
George, W. & Capp, S. 1979 A theory for natural convection turbulent boundary layers next to heated vertical surfaces. Int. J. Heat Mass Transfer 22 (6), 813826.CrossRefGoogle Scholar
Grannan, A. M., Cheng, J. S., Aggarwal, A., Hawkins, E. K., Xu, Y., Horn, S., lvarez, S.-Á., Jose, , & Aurnou, J. M. 2022 Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection. J. Fluid Mech. 939, R1.Google Scholar
Griffiths, R., Hughes, G. & Gayen, B. 2013 Horizontal convection dynamics: insights from transient adjustment. J. Fluid Mech. 726, 559595.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
Ho, C. & Chu, C. 1993 Periodic melting within a square enclosure with an oscillatory surface temperature. Int. J. Heat Mass Transfer 36 (3), 725733.Google Scholar
Hölling, M. & Herwig, H. 2005 Asymptotic analysis of the near-wall region of turbulent natural convection flows. J. Fluid Mech. 541, 383397.CrossRefGoogle Scholar
Jany, P. & Bejan, A. 1988 Scaling theory of melting with natural convection in an enclosure. Int. J. Heat Mass Transfer 31 (6), 12211235.Google Scholar
Johnston, H. & Doering, C. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102 (6), 064501.CrossRefGoogle ScholarPubMed
Kalhori, B. & Ramadhyani, S. 1985 Studies on heat transfer from a vertical cylinder, with or without fins, embedded in a solid phase change medium. J. Heat Transfer 107 (1), 4451.Google Scholar
Labarre, V., Fauve, S. & Chibbaro, S. 2023 Heat-flux fluctuations revealing regime transitions in Rayleigh–Bénard convection. Phys. Rev. Fluids 8 (5), 053501.Google Scholar
Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. 2018 Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 536.Google Scholar
Lacroix, M. & Arsenault, A. 1993 Analysis of natural convection melting of a subcooled pure metal. Numer. Heat Transfer A 23 (1), 2134.Google Scholar
Lakkaraju, R., Stevens, R., Verzicco, R., Grossmann, S., Prosperetti, A., Sun, C. & Lohse, D. 2012 Spatial distribution of heat flux and fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 86 (5), 056315.CrossRefGoogle ScholarPubMed
Le Guennic, C., Skrzypek, E., Skrzypek, M., Bigot, B., Peybernes, M. & Le Tellier, R. 2020 Synthesis of wp2.3 results on the metallic layer and new correlations. In Proceedings of International Seminar on In-vessel Retention: Outcomes of IVMR Project.Google Scholar
Li, M., Jing, L., Shui, J. & Huajian, C. 2015 Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy. Nucl. Engng Des. 292, 6975.Google Scholar
Li, Z., Chang, H., Han, K., Fang, F. & Chen, L. 2021 Experimental investigation on vertical heat transfer characteristics of light metallic layer with low aspect ratio. Nucl. Engng Des. 377, 111153.Google Scholar
Lindsay, A. & Bromley, L. 1950 Thermal conductivity of gas mixtures. Ind. Engng Chem. 42 (8), 15081511.Google Scholar
Lloyd, J. & Moran, W. 1974 Natural convection adjacent to horizontal surface of various planforms. J. Heat Transfer 96 (4), 443447.Google Scholar
Meunier, P. & Leweke, T. 2003 Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp. Fluids 35 (5), 408421.Google Scholar
Mullarney, J., Griffiths, R. & Hughes, G. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.CrossRefGoogle Scholar
Ng, C., Chung, D. & Ooi, A. 2013 Turbulent natural convection scaling in a vertical channel. Intl J. Heat Fluid Flow 44, 554562.CrossRefGoogle Scholar
Ng, C., Ooi, A., Lohse, D. & Chung, D. 2015 Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349361.CrossRefGoogle Scholar
Otero, J., Wittenberg, R., Worthing, R. & Doering, C. 2002 Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191199.CrossRefGoogle Scholar
Rein, F., Carénini, L., Fichot, F., Favier, B. & Le Bars, M. 2023 a Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number. J. Fluid Mech. 977, A26.Google Scholar
Rein, F., Carénini, L., Fichot, F., Le Bars, M. & Favier, B. 2023 b New correlations for focusing effect evaluation of the light metal layer in the lower head of a nuclear reactor in case of severe accident. In Proceedings of the 20th Nureth Conference.Google Scholar
Roche, P.-E., Castaing, B., Chabaud, B., Hébral, B. & Sommeria, J. 2001 Side wall effects in Rayleigh–Bénard experiments. Eur. Phys. J. B 24 (3), 405408.CrossRefGoogle Scholar
Rossby, H. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. Oceanogr. Abstr. 12 (1), 916.CrossRefGoogle Scholar
Shams, A., et al. 2020 Status of computational fluid dynamics for in-vessel retention: challenges and achievements. Ann. Nucl. Energy 135, 107004.Google Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90 (7), 074501.CrossRefGoogle ScholarPubMed
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measurements of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 70 (2), 026308.Google ScholarPubMed
Shishkina, O. 2016 Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E 93 (5), 051102.CrossRefGoogle ScholarPubMed
Sutherland, W. 1895 Xxxvii. The viscosity of mixed gases. London Edinburgh Philos. Mag. J. Sci. 40 (246), 421431.Google Scholar
Teimurazov, A., Singh, S., Su, S., Eckert, S., Shishkina, O. & Vogt, T. 2023 Oscillatory large-scale circulation in liquid–metal thermal convection and its structural unit. J. Fluid Mech. 977, A16.CrossRefGoogle Scholar
Theofanous, T., Liu, C., Additon, S., Angelini, S., Kymäläinen, O. & Salmassi, T. 1997 In-vessel coolability and retention of a core melt. Nucl. Engng Des. 169 (1), 148.CrossRefGoogle Scholar
Versteegh, T. & Nieuwstadt, F. 1999 A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Int. J. Heat Mass Transfer 42 (19), 36733693.Google Scholar
Verzicco, R. & Sreenivasan, K. 2008 A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203219.CrossRefGoogle Scholar
Viskanta, R. 1988 Heat transfer during melting and solidification of metals. J. Heat Transfer 110 (4b), 12051219.Google Scholar
Wells, A. & Worster, M. 2008 A geophysical-scale model of vertical natural convection boundary layers. J. Fluid Mech. 609, 111137.Google Scholar
Wilke, C. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18 (4), 517519.CrossRefGoogle Scholar
Supplementary material: File

Rein et al. supplementary material 1

Rein et al. supplementary material
Download Rein et al. supplementary material 1(File)
File 21.1 KB
Supplementary material: File

Rein et al. supplementary material movie 1

Rein et al. supplementary material movie
Download Rein et al. supplementary material movie 1(File)
File 40.8 MB