No CrossRef data available.
Published online by Cambridge University Press: 11 March 2025
We investigate convection in a thin cylindrical gas layer with an imposed flux at the bottom and a fixed temperature along the side, using a combination of direct numerical simulations and laboratory experiments. The experimental approach allows us to extend by two orders of magnitude the explored range in terms of flux Rayleigh number. We identify a scaling law governing the root-mean-square horizontal velocity and explain it through a dimensional analysis based on heat transport in the turbulent regime. Using particle image velocimetry, we experimentally confirm, for the most turbulent regimes, the presence of a drifting persistent pattern consisting of radial branches, as identified by Rein et al. (2023, J. Fluid Mech. 977, A26). We characterise the angular drift frequency and azimuthal wavenumber of this pattern as functions of the Rayleigh number. The system exhibits a wide distribution of heat flux across various time scales, with the longest fluctuations attributed to the branch pattern and the shortest to turbulent fluctuations. Consequently, the branch pattern must be considered to better forecast important wall heat flux fluctuations, a result of great relevance in the context of nuclear safety, the initial motivation for our study.