Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-29T05:25:51.916Z Has data issue: false hasContentIssue false

Effects of a short splitter plate on the wake characteristics and vortex evolution of flow around a circular cylinder in proximity to a wall

Published online by Cambridge University Press:  07 August 2025

Jiankang Zhou
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Xiang Qiu*
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China School of Science, Shanghai Institute of Technology, Shanghai 201418, PR China
Jiahua Li
Affiliation:
College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
Yulu Liu*
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China School of Science, Shanghai Institute of Technology, Shanghai 201418, PR China
*
Corresponding authors: Yulu Liu, ylliu@sit.edu.cn; Xiang Qiu, qiux@sit.edu.cn
Corresponding authors: Yulu Liu, ylliu@sit.edu.cn; Xiang Qiu, qiux@sit.edu.cn

Abstract

The experimental investigation focuses on the effects of a short splitter plate on the flow physics of a circular cylinder in proximity to a wall by particle image velocimetry. The Reynolds number is Re = 3900, and the near-wall cylinder is immersed in turbulent boundary layer flow. Three gap ratios (i.e. $G/D$ = 0.25, 0.5 and 1) are considered, and the splitter plate length is $L/D=0$, 0.25, 0.5, 0.75 and 1. For $G/D$ = 0.5 and 1, as $L/D$ increases from 0 to 1, the splitter plate facilitates the cylinder shear layers to elongate downstream, and the vortex formation length is increased, which leads to the increase of the range of the recirculation region. For $G/D$ = 0.25, the wall suppression on the wake vortex formation is enhanced, and the variations of the vortex formation length and the range of the recirculation region with $L/D$ are small. The Strouhal number St presents a decrease with increasing $L/D$ for the three gap ratios. The effects of $L/D$ on the vortex evolution are revealed. For $G/D$ = 0.5 and 1, as $L/D$ increases, the induction of the lower wake vortex on the wall secondary vortex becomes weaker due to the reduction in strength of the wake vortex and the increase of the vortex formation length. Additionally, the wake fluctuation intensity is decreased with the increase of $L/D$ due to the splitter plate suppression. For $G/D$ = 0.25, theL/D influences on evolution of the wake vortices and wall secondary vortex are small, which result in weaker variation of the wake fluctuation intensity with $L/D$.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afgan, I., Kahil, Y., Benhamadouche, S. & Sagaut, P. 2011 Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Phys. Fluids. 23 (7), 075101.10.1063/1.3596267CrossRefGoogle Scholar
Akilli, H., Karakus, C., Akar, A., Sahin, B. & Tumen, N.F. 2008 Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate. Trans. ASME J. Fluids Engng 130 (4), 041401.10.1115/1.2903813CrossRefGoogle Scholar
Ali, M.S.M., Doolan, C.J. & Wheatley, V. 2011 Low Reynolds number flow over a square cylinder with a splitter plate. Phys. Fluids. 23 (3), 033602.Google Scholar
Anderson, E.A. & Szewczyk, A.A. 1997 Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Exp. Fluids 23 (2), 161174.10.1007/s003480050098CrossRefGoogle Scholar
Apelt, C.J., West, G.S. & Szewczyk, A.A. 1973 The effects of wake splitter plates on the flow past a circular cylinder in the range $10^4\lt Re\lt 5 \times 10^4$ . J. Fluid Mech. 61, 187198.10.1017/S0022112073000649CrossRefGoogle Scholar
Assi, G.R.S., Bearman, P.W. & Kitney, N. 2009 Low drag solutions for suppressing vortex-induced vibration of circular cylinders. J. Fluids Struct. 25 (4), 666675.10.1016/j.jfluidstructs.2008.11.002CrossRefGoogle Scholar
Bearman, P.W. & Zdravkovich, M.M. 1978 Flow around a circular cylinder near a plane boundary. J. Fluid Mech. 89 (1), 3347.10.1017/S002211207800244XCrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Chalmers, H., Fang, X.J., Addai, S. & Tachie, M.F. 2022 The effects of wall roughness on the flow dynamics behind a near-wall square cylinder. Exp. Fluids 63 (8), 123.10.1007/s00348-022-03472-zCrossRefGoogle Scholar
Chalmers, H., Fang, X.J. & Tachie, M.F. 2023 Gap ratio effects on the coherent structures surrounding a near-wall square cylinder. Intl J. Heat Fluid Flow 100, 109114.10.1016/j.ijheatfluidflow.2023.109114CrossRefGoogle Scholar
Chauhan, M.K., Dutta, S., More, B.S. & Gandhi, B.K. 2018 Experimental investigation of flow over a square cylinder with an attached splitter plate at intermediate Reynolds number. J. Fluids Struct. 76, 319335.10.1016/j.jfluidstructs.2017.10.012CrossRefGoogle Scholar
Chen, L.F., Wang, Y.T., Sun, S.Y. & Wang, S.Q. 2020 The effect of boundary shear flow on hydrodynamic forces of a pipeline over a fully scoured seabed. Ocean Engng 206, 107326.10.1016/j.oceaneng.2020.107326CrossRefGoogle Scholar
Chen, W.L., Ji, C.N., Alam, M.M., Xu, D. & Zhang, Z.M. 2022 Three-dimensional flow past a circular cylinder in proximity to a stationary wall. Ocean Engng 247, 110783.10.1016/j.oceaneng.2022.110783CrossRefGoogle Scholar
Choi, H., Jeon, W.P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1), 113139.10.1146/annurev.fluid.39.050905.110149CrossRefGoogle Scholar
Cicolin, M.M., Buxton, O.R.H., Assi, G.R.S. & Bearman, P.W. 2021 The role of separation on the forces acting on a circular cylinder with a control rod. J. Fluid Mech. 915, A33.10.1017/jfm.2021.64CrossRefGoogle Scholar
Cimbala, J.M. & Garg, S. 1991 Flow in the wake of a freely rotatable cylinder with splitter plate. AIAA J. 29 (6), 10011003.10.2514/3.10692CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.10.2514/8.2938CrossRefGoogle Scholar
Cui, G.P., Feng, L.H. & Hu, Y.W. 2022 Flow-induced vibration control of a circular cylinder by using flexible and rigid splitter plates. Ocean Engng 249, 110939.10.1016/j.oceaneng.2022.110939CrossRefGoogle Scholar
Deng, S.C., Pan, C., Wang, J.J. & He, G.S. 2018 On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. J. Fluid Mech. 844, 635668.10.1017/jfm.2018.160CrossRefGoogle Scholar
Doligalski, T.L., Smith, C.R. & Walker, J.D.A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26 (1), 573616.10.1146/annurev.fl.26.010194.003041CrossRefGoogle Scholar
Duan, F. & Wang, J.J. 2021 Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate. J. Fluid Mech. 920, A6.10.1017/jfm.2021.403CrossRefGoogle Scholar
Duan, F. & Wang, J.J. 2024 Passive bionic motion of a flexible film in the wake of a circular cylinder: chaos and periodicity, flow–structure interactions and energy evolution. J. Fluid Mech. 986, A29.10.1017/jfm.2024.327CrossRefGoogle Scholar
Essel, E.E., Balachandar, R. & Tachie, M.F. 2023 Effects of sheltering on the unsteady wake dynamics of tandem cylinders mounted in a turbulent boundary layer. J. Fluid Mech. 954, A40.10.1017/jfm.2022.1029CrossRefGoogle Scholar
Essel, E.E., Tachie, M.F. & Balachandar, R. 2021 Time-resolved wake dynamics of finite wall-mounted circular cylinders submerged in a turbulent boundary layer. J. Fluid Mech. 917, A8.10.1017/jfm.2021.265CrossRefGoogle Scholar
Fang, X.J. & Tachie, M.F. 2019 b On the unsteady characteristics of turbulent separations over a forward-backward-facing step. J. Fluid Mech. 863, 9941030.10.1017/jfm.2018.962CrossRefGoogle Scholar
Fang, X.J. & Tachie, M.F. 2019 a Flows over surface-mounted bluff bodies with different spanwise widths submerged in a deep turbulent boundary layer. J. Fluid Mech. 877, 717758.10.1017/jfm.2019.617CrossRefGoogle Scholar
Fang, X.J. & Tachie, M.F. 2020 Spatio-temporal dynamics of flow separation induced by a forward-facing step submerged in a thick turbulent boundary layer. J. Fluid Mech. 892, A40.10.1017/jfm.2020.209CrossRefGoogle Scholar
Feng, L.H. & Wang, J.J. 2010 Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech. 662, 232259.10.1017/S0022112010003174CrossRefGoogle Scholar
Feng, L.H., Wang, J.J. & Pan, C. 2011 Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys. Fluids. 23 (1), 014106.10.1063/1.3540679CrossRefGoogle Scholar
Gerrard, J.H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25 (2), 401413.10.1017/S0022112066001721CrossRefGoogle Scholar
Grass, A.J., Raven, P.W.J., Stuart, R.J. & Bray, J.A. 1984 The influence of boundary layer velocity gradients and bed proximity on vortex shedding from free spanning pipelines. J. Energy Resour. Technol. 106 (1), 7078.10.1115/1.3231028CrossRefGoogle Scholar
He, G.S., Pan, C., Feng, L.H., Gao, Q. & Wang, J.J. 2016 Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J. Fluid Mech. 792, 274306.10.1017/jfm.2016.81CrossRefGoogle Scholar
He, G.S., Pan, C. & Wang, J.J. 2013 a Dynamics of vortical structures in cylinder/wall interaction with moderate gap ratio. J. Fluids Struct. 43, 100109.10.1016/j.jfluidstructs.2013.09.005CrossRefGoogle Scholar
He, G.S. & Wang, J.J. 2015 Flat plate boundary layer transition induced by a controlled near-wall circular cylinder wake. Phys. Fluids. 27 (2), 024106.10.1063/1.4907744CrossRefGoogle Scholar
He, G.S., Wang, J.J. & Pan, C. 2013 b Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J. Fluid Mech. 718, 116130.10.1017/jfm.2012.599CrossRefGoogle Scholar
He, G.S., Wang, J.J., Pan, C., Feng, L.H., Gao, Q. & Rinoshika, A. 2017 Vortex dynamics for flow over a circular cylinder in proximity to a wall. J. Fluid Mech. 812, 698720.10.1017/jfm.2016.812CrossRefGoogle Scholar
He, G.S., Wang, J.J. & Rinoshika, A. 2019 Orthogonal wavelet multiresolution analysis of the turbulent boundary layer measured with two-dimensional time-resolved particle image velocimetry. Phys. Rev. E 99 (5), 053105.10.1103/PhysRevE.99.053105CrossRefGoogle ScholarPubMed
Hsieh, S.C., Low, Y.M. & Chiew, Y.M. 2016 Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary. J. Fluids Struct. 65, 257277.10.1016/j.jfluidstructs.2016.06.007CrossRefGoogle Scholar
Jiang, H.Y. & Cheng, L. 2017 Strouhal–Reynolds number relationship for flow past a circular cylinder. J. Fluid Mech. 832, 170188.10.1017/jfm.2017.685CrossRefGoogle Scholar
Jiang, H.Y., Cheng, L., Draper, S. & An, H.W. 2017 Three-dimensional wake transition for a circular cylinder near a moving wall. J. Fluid Mech. 818, 260287.10.1017/jfm.2017.146CrossRefGoogle Scholar
Jiang, H.Y., Cheng, L., Draper, S., An, H.W. & Tong, F.F. 2016 Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. J. Fluid Mech. 801, 353391.10.1017/jfm.2016.446CrossRefGoogle Scholar
Jiang, H.Y., Ju, X.Y., Guo, Z. & Wang, L.Z. 2024 Turbulent wake characteristics for a circular cylinder in proximity to a moving wall. J. Fluid Mech. 983, A18.10.1017/jfm.2024.133CrossRefGoogle Scholar
Jin, Y.Q., Cheng, S.Y. & Chamorro, L.P. 2019 Active pitching of short splitters past a cylinder: drag increase and wake. Phys. Rev. E 100 (6), 063106.10.1103/PhysRevE.100.063106CrossRefGoogle Scholar
Kazeminezhad, M.H., Bakhtiary, A.Y. & Shahidi, A.E. 2010 Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline. Appl. Ocean Res. 32 (4), 460470.10.1016/j.apor.2010.10.002CrossRefGoogle Scholar
Kim, M., Park, J. & Choi, H. 2024 Large eddy simulation of flow over a circular cylinder with a neural-network-based subgrid-scale model. J. Fluid Mech. 984, A6.10.1017/jfm.2024.154CrossRefGoogle Scholar
Kravchenko, A.G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at Re d = 3900. Phys. Fluids. 12, 403417.10.1063/1.870318CrossRefGoogle Scholar
Kwon, K. & Choi, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys. Fluids. 8 (2), 479486.10.1063/1.868801CrossRefGoogle Scholar
Kyriakides, N.K., Kastrinakis, E.G., Nychas, S.G. & Goulas, A. 1999 Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J. 37 (10), 11971205.10.2514/2.613CrossRefGoogle Scholar
Lei, C.W., Cheng, L. & Kavanagh, K. 1999 Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. J. Wind Engng Ind. Aerodyn. 80, 263286.10.1016/S0167-6105(98)00204-9CrossRefGoogle Scholar
Li, F.Q., He, C.X., Wang, P. & Liu, Y.Z. 2021 Unsteady analysis of turbulent flow and heat transfer behind a wall-proximity square rib using dynamic delayed detached-eddy simulation. Phys. Fluids. 33 (5), 055104.10.1063/5.0051379CrossRefGoogle Scholar
Li, J.H., Wang, B.F., Qiu, X., Wu, J.Z., Zhou, Q., Fu, S.X. & Liu, Y.L. 2022 a The dynamics of cylinder-wake/boundary-layer interaction revealed by turbulent transports. Phys. Fluids. 34 (11), 115136.10.1063/5.0111483CrossRefGoogle Scholar
Li, J.H., Wang, B.F., Qiu, X., Wu, J.Z., Zhou, Q., Fu, S.X. & Liu, Y.L. 2022 b Three-dimensional vortex dynamics and transitional flow induced by a circular cylinder placed near a plane wall with small gap ratios. J. Fluid Mech. 953, A2.10.1017/jfm.2022.930CrossRefGoogle Scholar
Li, J.H., Wang, B.F., Qiu, X., Zhou, Q., Fu, S.X. & Liu, Y.L. 2024 a Turbulent transports in the flow around a rectangular cylinder with different aspect ratios. Ocean Engng 301, 117512.10.1016/j.oceaneng.2024.117512CrossRefGoogle Scholar
Li, J.H., Wang, B.F., Qiu, X., Zhou, Q., Fu, S.X. & Liu, Y.L. 2024 b Vortex dynamics and boundary layer transition in flow around a rectangular cylinder with different aspect ratios at medium Reynolds number. J. Fluid Mech. 982, A5.10.1017/jfm.2024.87CrossRefGoogle Scholar
Li, Z.F., Li, J.H., Wu, J.Z., Chong, K.L., Wang, B.F., Zhou, Q. & Liu, Y.L. 2023 Numerical simulation of flow instability induced by a fixed cylinder placed near a plane wall in oscillating flow. Ocean Engng 288, 116115.10.1016/j.oceaneng.2023.116115CrossRefGoogle Scholar
Lin, W.J., Lin, C., Hsieh, S.C. & Dey, S. 2009 Flow characteristics around a circular cylinder placed horizontally above a plane boundary. J. Engng Mech. 135 (7), 697716.Google Scholar
Liu, J. & Gao, F.P. 2022 Triggering mechanics for transverse vibrations of a circular cylinder in a shear flow: wall-proximity effects. J. Fluids Struct. 108, 103423.10.1016/j.jfluidstructs.2021.103423CrossRefGoogle Scholar
Liu, J.X., Wang, J.J., Zhu, Y.C. & Pan, C. 2024 a Vortex dynamics in the near wake of a surface-mounted hemisphere. Phys. Fluids. 36 (1), 013619.10.1063/5.0188075CrossRefGoogle Scholar
Liu, K., Deng, J.Q. & Mei, M. 2016 Experimental study on the confined flow over a circular cylinder with a splitter plate. Flow Meas. Instrum. 51, 95104.10.1016/j.flowmeasinst.2016.09.002CrossRefGoogle Scholar
Liu, Y.L., Li, Y.B., Li, J.H., Zhou, J.K. & Qiu, X. 2024 b The wake characteristics and hydrodynamic forces of a near-wall circular cylinder with the splitter plate. Mod. Phys. Lett. B 38 (33), 2450316.10.1142/S0217984924503160CrossRefGoogle Scholar
Liu, Y.L., Qi, L.M., Zhou, J.K., Li, J.H., Tao, Y.Z. & Qiu, X. 2023 Experimental research on wake characteristics and vortex evolution of side-by-side circular cylinders placed near a wall. Ocean Engng 285, 115268.10.1016/j.oceaneng.2023.115268CrossRefGoogle Scholar
Liu, Y.L., Wang, Q., Zhou, J.K., Li, J.H. & Qiu, X. 2024 c The height ratio effects on the flow characteristics of a wall-mounted hemisphere immersed in the turbulent boundary layer. Ocean Engng 310, 118592.10.1016/j.oceaneng.2024.118592CrossRefGoogle Scholar
Ma, X., Karamanos, G.S. & Karniadakis, G.E. 2000 Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 2962.10.1017/S0022112099007934CrossRefGoogle Scholar
Marusic, I., Chauhan, K.A., Kulandaivelu, V. & Hutchins, N. 2015 Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379411.10.1017/jfm.2015.556CrossRefGoogle Scholar
Maryami, R., Arcondoulis, E.J.G. & Liu, Y. 2024 Flow and aerodynamic noise control of a circular cylinder by local blowing. J. Fluid Mech. 980, A56.10.1017/jfm.2024.39CrossRefGoogle Scholar
Meng, W.S., Zhao, C.B., Wu, J.Z., Wang, B.F., Zhou, Q. & Chong, K.L. 2024 Simulation of flow and debris migration in extreme ultraviolet source vessel. Phys. Fluids. 36 (2), 023322.10.1063/5.0190136CrossRefGoogle Scholar
Michaelis, D., Neal, D.R. & Wieneke, B. 2016 Peak-locking reduction for particle image velocimetry. Meas. Sci. Technol. 27 (10), 104005.10.1088/0957-0233/27/10/104005CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to Re = 590. Phys. Fluids. 11, 943945.10.1063/1.869966CrossRefGoogle Scholar
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.10.1017/S0022112094003332CrossRefGoogle Scholar
Octavianty, R. & Asai, M. 2016 Effects of short splitter plates on vortex shedding and sound generation in flow past two side-by-side square cylinders. Exp. Fluids 57 (9), 113.10.1007/s00348-016-2227-4CrossRefGoogle Scholar
Oudheusden, B.W.V., Scarano, F., Hinsberg, N.P.V. & Watt, D.W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids. 39 (1), 8698.10.1007/s00348-005-0985-5CrossRefGoogle Scholar
Ouedraogo, N.F. & Essel, E.E. 2023 Unsteady wake interference of unequal-height tandem cylinders mounted in a turbulent boundary layer. J. Fluid Mech. 977, A52.10.1017/jfm.2023.952CrossRefGoogle Scholar
Ouro, P., Muhawenimana, V. & Wilson, C.A.M.E. 2019 Asymmetric wake of a horizontal cylinder in close proximity to a solid boundary for Reynolds numbers in the subcritical turbulence regime. Phys. Rev. Fluids 4 (10), 104604.10.1103/PhysRevFluids.4.104604CrossRefGoogle Scholar
Pan, C., Wang, H.P. & Wang, J.J. 2013 Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas. Sci. Technol. 24 (5), 055305.10.1088/0957-0233/24/5/055305CrossRefGoogle Scholar
Pan, C., Wang, J.J., Zhang, P.F. & Feng, L.H. 2008 Coherent structures in bypass transition induced by a cylinder wake. J. Fluid Mech. 603, 367389.10.1017/S0022112008001018CrossRefGoogle Scholar
Parnaudeau, P., Carlier, J., Heitz, D. & Lamballais, E. 2008 Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids. 20 (8), 085101.10.1063/1.2957018CrossRefGoogle Scholar
Pearson, D.S., Goulart, P.J. & Ganapathisubramani, B. 2013 Turbulent separation upstream of a forward-facing step. J. Fluid Mech. 724, 284304.10.1017/jfm.2013.113CrossRefGoogle Scholar
Price, S.J., Sumner, D., Smith, J.G., Leong, K. & Paidoussis, M.P. 2002 Flow visualization around a circular cylinder near to a plane wall. J. Fluids Struct. 16 (2), 175191.10.1006/jfls.2001.0413CrossRefGoogle Scholar
Qiu, X., Wu, H.D., Tao, Y.Z., Li, J.H., Zhou, J.K. & Liu, Y.L. 2022 Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese J. Theor. Appl. Mech. 54, 30423057.Google Scholar
Qu, Y., Wang, J.J., Feng, L.H. & He, X. 2019 Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface. J. Fluid Mech. 880, 764798.10.1017/jfm.2019.703CrossRefGoogle Scholar
Samimy, M. & Lele, S.K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids. 3 (8), 19151923.10.1063/1.857921CrossRefGoogle Scholar
Sarkar, S. & Sarkar, S. 2010 Vortex dynamics of a cylinder wake in proximity to a wall. J. Fluids Struct. 26 (1), 1940.10.1016/j.jfluidstructs.2009.08.003CrossRefGoogle Scholar
Scharnowski, S. & Kähler, C.J. 2020 Particle image velocimetry-Classical operating rules from today’s perspective. Opt Lasers Eng 135, 106185.10.1016/j.optlaseng.2020.106185CrossRefGoogle Scholar
Sciacchitano, A. & Wieneke, B. 2016 PIV uncertainty propagation. Meas. Sci. Technol. 27 (8), 084006.10.1088/0957-0233/27/8/084006CrossRefGoogle Scholar
Shadden, S.C., Dabiri, J.O. & Marsden, J.E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids. 18 (4), 047105.10.1063/1.2189885CrossRefGoogle Scholar
Sharma, K.R. & Dutta, S. 2021 Influence of length and effective stiffness of an attached flexible foil for flow over a square cylinder. J. Fluids Struct. 104, 103298.10.1016/j.jfluidstructs.2021.103298CrossRefGoogle Scholar
Silva, P.H.N. & Assi, G.R.S. 2024 Experimental investigation on the optimal control of vortex shedding of a circular cylinder with rotating rods at moderate Reynolds numbers. J. Fluids Struct. 124, 104026.10.1016/j.jfluidstructs.2023.104026CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.10.1090/qam/910462CrossRefGoogle Scholar
Sumer, B.M. & Fredsøe, J. 2006 Hydrodynamics Around Cylindrical Structures. revised, edn. World Scientific.10.1142/6248CrossRefGoogle Scholar
Sun, Y.K., Wang, J.S., Hu, Z.M., Lin, K. & Fan, D.X. 2022 Transition of FIV for a circular cylinder with splitter plates. Intl J. Mech. Sci. 227, 107429.10.1016/j.ijmecsci.2022.107429CrossRefGoogle Scholar
Tang, T., Zhu, H.J., Wang, J.S., Alam, M.M., Song, J.Z. & Chen, Q.Y. 2022 Flow-induced rotation modes and wake characteristics of a circular cylinder attached with a splitter plate at low Reynolds numbers. Ocean Engng 266, 112823.10.1016/j.oceaneng.2022.112823CrossRefGoogle Scholar
Tang, Z.Q. & Jiang, N. 2024 Self-similarity in over-tripped turbulent boundary-layer flows. J. Fluid Mech. 984, A34.10.1017/jfm.2024.213CrossRefGoogle Scholar
Tang, Z.Q., Jiang, N., Lu, Z.M. & Zhou, Q. 2024 Artificially thickened boundary layer turbulence due to trip wires of varying diameter. Phys. Rev. Fluids 9 (2), 024606.10.1103/PhysRevFluids.9.024606CrossRefGoogle Scholar
Tang, Z.Q., Wu, Y.H., Jia, Y.X. & Jiang, N. 2018 PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element. Flow Turbul. Combust. 100 (2), 365389.10.1007/s10494-017-9852-8CrossRefGoogle Scholar
Taniguchi, S. & Miyakoshi, K. 1990 Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall. Exp. Fluids 9 (4), 197204.10.1007/BF00190418CrossRefGoogle Scholar
Thompson, M.C., Leweke, T. & Hourigan, K. 2021 Bluff bodies and wake–wall interactions. Annu. Rev. Fluid Mech. 53 (1), 347376.10.1146/annurev-fluid-072220-123637CrossRefGoogle Scholar
Tomkins, C.D. & Adrian, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.10.1017/S0022112003005251CrossRefGoogle Scholar
Unal, M.F. & Rockwell, D. 1987 On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. J. Fluid Mech. 190, 513529.10.1017/S0022112088001430CrossRefGoogle Scholar
Wang, C.H. & Li, Y. 2023 Control of a circular cylinder flow using attached solid/perforated splitter plates at deflection angles. Phys. Fluids. 35 (10), 105109.10.1063/5.0165632CrossRefGoogle Scholar
Wang, J.S., He, G.S. & Wang, J.J. 2024 Revisiting the wake-triggered secondary vortices over a circular–cylinder/flat-plate configuration. Phys. Fluids. 36 (2), 021704.10.1063/5.0193239CrossRefGoogle Scholar
Wang, X.K. & Tan, S.K. 2008 Near-wake flow characteristics of a circular cylinder close to a wall. J. Fluids Struct. 24 (5), 605627.10.1016/j.jfluidstructs.2007.11.001CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.10.1146/annurev.fl.28.010196.002401CrossRefGoogle Scholar
Wu, J.Z., Wang, B.F. & Zhou, Q. 2022 Massive heat transfer enhancement of Rayleigh–Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mechanica Sin. 38 (2), 321319.10.1007/s10409-021-09042-xCrossRefGoogle Scholar
Yucel, S.B., Cetiner, O. & Unal, M.F. 2010 Interaction of circular cylinder wake with a short asymmetrically located downstream plate. Exp. Fluids. 49 (1), 241255.10.1007/s00348-010-0852-xCrossRefGoogle Scholar
Zeng, C., Qiu, F., Zhou, J., Hu, Y.D. & Wang, L.L. 2023 Large eddy simulation of flow around two side-by-side circular cylinders at Reynolds number 3900. Phys. Fluids. 35 (3), 035102.10.1063/5.0131708CrossRefGoogle Scholar
Zhang, H.J. & Shi, W.P. 2016 Numerical simulation of flow over a circular cylinder with a splitter plate near a moving wall. Ocean Engng 122, 162171.10.1016/j.oceaneng.2016.06.026CrossRefGoogle Scholar
Zhang, S., Ma, Y.P., Xia, Y.X., Qiu, X. & Liu, Y.L. 2024 Statistics and evolution of Reynolds shear stress structure in cylinder-wake/boundary-layer interaction. Phys. Lett. A 519, 129720.10.1016/j.physleta.2024.129720CrossRefGoogle Scholar
Zhang, S., Xia, Y.X., Qiu, X., Dong, S.W. & Liu, Y.L. 2023 Secondary vortical structures statistics of near-wake region in cylinder/wall interaction. Acta Mechanica Sin. 39 (8), 322375.10.1007/s10409-023-22375-xCrossRefGoogle Scholar
Zhang, Z.M., Ji, C.N., Chen, W.L., Hua, Y. & Srinil, N. 2021 Influence of boundary layer thickness and gap ratios on three-dimensional flow characteristics around a circular cylinder in proximity to a bottom plane. Ocean Engng 226, 108858.10.1016/j.oceaneng.2021.108858CrossRefGoogle Scholar
Zhao, C.B., Wu, J.Z., Wang, B.F., Chang, T., Zhou, Q. & Chong, K.L. 2024 Numerical study on the onset of global-scale flow from individual buoyant plumes: implications for indoor disease transmission. Phys. Fluids. 36 (3), 035149.10.1063/5.0191573CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XCrossRefGoogle Scholar
Zhou, J.K., Qiu, X., Li, J.H. & Liu, Y.L. 2021 The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall. Phys. Fluids. 33 (3), 037112.10.1063/5.0039611CrossRefGoogle Scholar
Zhou, J.K., Qiu, X., Li, J.H. & Liu, Y.L. 2022 Vortex evolution of flow past the near-wall circular cylinder immersed in a flat-plate turbulent boundary layer. Ocean Engng 260, 112011.10.1016/j.oceaneng.2022.112011CrossRefGoogle Scholar
Zhou, J.K., Qiu, X., Li, J.H., Wang, B.F., Zhou, Q. & Liu, Y.L. 2024 The experimental investigation on wake dynamics of flow around a circular cylinder with the splitter plate. J. Fluids Struct. 127, 104130.10.1016/j.jfluidstructs.2024.104130CrossRefGoogle Scholar
Supplementary material: File

Zhou et al. supplementary movie 1

figure16a-evolution of the FTLE field
Download Zhou et al. supplementary movie 1(File)
File 6.4 MB
Supplementary material: File

Zhou et al. supplementary movie 2

figure16b-evolution of the streamwise velocity
Download Zhou et al. supplementary movie 2(File)
File 3 MB
Supplementary material: File

Zhou et al. supplementary movie 3

figure16c-evolution of the FTLE field
Download Zhou et al. supplementary movie 3(File)
File 7.5 MB
Supplementary material: File

Zhou et al. supplementary movie 4

figure16d-evolution of the streamwise velocity
Download Zhou et al. supplementary movie 4(File)
File 3.7 MB
Supplementary material: File

Zhou et al. supplementary movie 5

figure16e-evolution of the FTLE field
Download Zhou et al. supplementary movie 5(File)
File 8.9 MB
Supplementary material: File

Zhou et al. supplementary movie 6

figure16f-evolution of the streamwise velocity
Download Zhou et al. supplementary movie 6(File)
File 4.9 MB