Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-09-21T09:11:27.777Z Has data issue: false hasContentIssue false

Dynamics of the growth of a gas bubble in a magmatic melt during its decompression: the effect of barodiffusion

Published online by Cambridge University Press:  27 August 2025

Andrey A. Chernov*
Affiliation:
Novosibirsk State University, Novosibirsk, Russia Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia
Maksim N. Davydov
Affiliation:
Novosibirsk State University, Novosibirsk, Russia Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
Eugeny V. Ermanyuk
Affiliation:
Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
*
Corresponding author: Andrey A. Chernov, chernov@itp.nsc.ru

Abstract

This paper explores the role of barodiffusion in the dynamics of gas bubble growth in highly viscous gas-saturated magma subjected to instant decompression. A mathematical model describing the growth of a single isolated bubble is formulated in terms of the modified Rayleigh–Plesset equation coupled with the mass transfer and material balance equations. The model simultaneously takes into account both dynamic and diffusion mechanisms, including the effect of barodiffusion caused by emergence of a large pressure gradient in the liquid, which, in turn, is associated with formation of a diffusion boundary layer around the bubble. An analytical solution of the problem is found, the construction of which is based on the existence of a quasi-stationary state of the bubble growth process. It is shown that barodiffusion manifests itself at the initial and transient stages and under certain conditions can play a paramount role.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arefmanesh, A., Advani, S.G. & Michaelides, E.E. 1992 An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing limited dissolved gas. Intl J. Heat Mass Transfer 35 (7), 17111722.10.1016/0017-9310(92)90141-ECrossRefGoogle Scholar
Avdeev, A.A. 2016 Bubble Systems. Springer.10.1007/978-3-319-29288-5CrossRefGoogle Scholar
Bamber, E., et al. 2024 Outgassing behaviour during highly explosive basaltic eruptions. Commun. Earth Environ. 5, 116.10.1038/s43247-023-01182-wCrossRefGoogle Scholar
Bauchy, M., Guillot, B., Micoulaut, M. & Sator, N. 2013 Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation. Chem. Geol. 346, 4756.10.1016/j.chemgeo.2012.08.035CrossRefGoogle Scholar
Chapman, S. 1958 Thermal diffusion in ionized gases. Proc. Phys. Soc. 72 (3), 353.10.1088/0370-1328/72/3/305CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chernov, A.A., Antonov, D.V., Pavlenko, A.N., Bar-Kohany, T., Strizhak, P.A. & Sazhin, S.S. 2025 Bubble growth in composite water/fuel droplets: effect on timing of their puffing/micro-explosion. Fuel 392, 134696.10.1016/j.fuel.2025.134696CrossRefGoogle Scholar
Chernov, A.A., Davydov, M.N. & Lezhnin, S.I. 2023 a Effect of barodiffusion on the dynamics of gas bubble growth in the magmatic melt. Thermophys. Aeromech. 30 (4), 721732.10.1134/S086986432304011XCrossRefGoogle Scholar
Chernov, A.A., Davydov, M.N. & Pil’nik, A.A. 2023 b Dynamics of gas bubble growth in a high-viscosity gas-saturated liquid during its decompression at a finite rate. Thermophys. Aeromech. 30 (1), 153162.10.1134/S0869864323010171CrossRefGoogle Scholar
Chernov, A.A., Kedrinsky, V.K. & Pil’nik, A.A. 2014 Kinetics of gas bubble nucleation and growth in magmatic melt at its rapid decompression. Phys. Fluids 26 (11), 116602.10.1063/1.4900846CrossRefGoogle Scholar
Chernov, A.A. & Pil’nik, A.A. 2015 Mechanism of growth of a crystalline nucleus in a supercooled melt at large deviations from equilibrium. JETP Lett. 102 (8), 526529.10.1134/S0021364015200023CrossRefGoogle Scholar
Chernov, A.A. & Pil’nik, A.A. 2018 Gas segregation during crystallization process. Intl J. Heat Mass Transfer 119, 963969.10.1016/j.ijheatmasstransfer.2017.12.003CrossRefGoogle Scholar
Chernov, A.A., Pil’nik, A.A., Davydov, M.N., Ermanyuk, E.V. & Pakhomov, M.A. 2018 Gas nucleus growth in high-viscosity liquid under strongly non-equilibrium conditions. Intl J. Heat Mass Transfer 123, 11011108.10.1016/j.ijheatmasstransfer.2018.03.045CrossRefGoogle Scholar
Chernov, A.A., Pil’nik, A.A., Vladyko, I.V. & Lezhnin, S.I. 2020 New semi-analytical solution of the problem of vapor bubble growth in superheated liquid. Sci. Rep.-UK 10 (1), 16526.10.1038/s41598-020-73596-xCrossRefGoogle ScholarPubMed
Coumans, J.P., Llewellin, E.W., Wadsworth, F.B., Humphreys, M.C.S., Mathias, S.A., Yelverton, B.M. & Gardner, J.E. 2020 An experimentally validated numerical model for bubble growth in magma. J. Volcanol. Geotherm. Res. 402, 107002.10.1016/j.jvolgeores.2020.107002CrossRefGoogle Scholar
Elperin, T., Kleeorin, N. & Rogachevskii, I. 1997 Turbulent barodiffusion, turbulent thermal diffusion, and large-scale instability in gases. Phys. Rev. E 55, 27132721.10.1103/PhysRevE.55.2713CrossRefGoogle Scholar
Gardner, J.E., Wadsworth, F.B., Carley, T.L., Llewellin, E.W., Kusumaatmaja, H.Sahagian, D. 2023 Bubble formation in magma. Annu. Rev. Earth Planet. Sci. 51, 131154.10.1146/annurev-earth-031621-080308CrossRefGoogle Scholar
Giordano, D., Russell, J.K. & Dingwell, D.B. 2008 Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271 (1), 123134.10.1016/j.epsl.2008.03.038CrossRefGoogle Scholar
Gubbins, D. & Davies, C.J. 2013 The stratified layer at the core–mantle boundary caused by barodiffusion of oxygen, sulphur and silicon. Phys. Earth Planet. Int. 215, 2128.10.1016/j.pepi.2012.11.001CrossRefGoogle Scholar
Ke, H.-B. & He, Y.-L. 2012 The mechanisms of thermal diffusion and baro-diffusion effects on thermacoustic mixture separation. Chem. Engng Sci. 84, 399407.10.1016/j.ces.2012.08.021CrossRefGoogle Scholar
Kedrinskii, V.K. 2005 Hydrodynamics of Explosion: Experiments and Models. Springer.Google Scholar
Kuchma, A.E. & Shchekin, A.K. 2021 Regularities of non-stationary diffusion growth of overcritical gas bubbles and kinetics of bubble distribution in presence of capillary and viscous forces. J. Chem. Phys. 154 (14), 144101.10.1063/5.0045314CrossRefGoogle ScholarPubMed
La Spina, G., Arzilli, F., Llewellin, E.W., Burton, M.R., Clarke, A.B., de’ Michieli Vitturi, M., Polacci, M., Hartley, M.E., Di Genova, D. & Mader, H.M. 2021 Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing. Earth Planet. Sci. Lett. 553, 116658.10.1016/j.epsl.2020.116658CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. vol. 6. Elsevier.Google Scholar
Langhammer, D., Di Genova, D. & Steinle-Neumann, G. 2021 Modeling the viscosity of anhydrous and hydrous volcanic melts. Geochem. Geophys. Geosyst. 22 (8), e2021GC009918.10.1029/2021GC009918CrossRefGoogle Scholar
Lensky, N.G., Lyakhovsky, V. & Navon, O. 2002 Expansion dynamics of volatile-supersaturated liquids and bulk viscosity of bubbly magmas. J. Fluid Mech. 460, 3956.10.1017/S0022112002008194CrossRefGoogle Scholar
Lensky, N.G., Navon, O. & Lyakhovsky, V. 2004 Bubble growth during decompression of magma: experimental and theoretical investigation. J. Volcanol. Geotherm. Res. 129 (1–3), 722.10.1016/S0377-0273(03)00229-4CrossRefGoogle Scholar
Mangan, M. & Sisson, T. 2000 Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183 (3), 441455.10.1016/S0012-821X(00)00299-5CrossRefGoogle Scholar
Massol, H. & Koyaguchi, T. 2005 The effect of magma flow on nucleation of gas bubbles in a volcanic conduit. J. Volcanol. Geotherm. Res. 143 (1), 6988.10.1016/j.jvolgeores.2004.09.011CrossRefGoogle Scholar
Mikic, B.B., Rohsenow, W.M. & Griffith, P. 1970 On bubble growth rates. Intl J. Heat Mass Transfer 13 (4), 657666.10.1016/0017-9310(70)90040-2CrossRefGoogle Scholar
Mourtada-Bonnefoi, C.C. & Laporte, D. 2004 Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet. Sci. Lett. 218 (3), 521537.10.1016/S0012-821X(03)00684-8CrossRefGoogle Scholar
Navon, O., Chekhmir, A. & Lyakhovsky, V. 1998 Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth Planet. Sci. Lett. 160 (3), 763776.10.1016/S0012-821X(98)00126-5CrossRefGoogle Scholar
Palvanov, B., Saidov, U., Yusupova, J. & Kravets, O.J. 2020 Numerical-analytical method for determining the barodiffusion coefficient of technological process of ion-exchange suspension filtration. IOP Conf. Ser.: Mater. Sci. Engng 862 (6), 062010.10.1088/1757-899X/862/6/062010CrossRefGoogle Scholar
Pavlov, P.A. 2015 Evaporation of a highly superheated liquid. Intl J. Heat Mass Transfer 88, 203209.10.1016/j.ijheatmasstransfer.2015.04.074CrossRefGoogle Scholar
Persikov, E.S. & Bukhtiyarov, P.G. 2020 Viscosity of magmatic melts: improved structural - chemical model. Chem. Geol. 556, 119820.10.1016/j.chemgeo.2020.119820CrossRefGoogle Scholar
Peñas-López, P., Parrales, M.A., Rodríguez-Rodríguez, J. & van der, Meer, D. 2016 The history effect in bubble growth and dissolution. Part 1theory. J. Fluid Mech. 800, 180212.10.1017/jfm.2016.401CrossRefGoogle Scholar
Prosperetti, A. 2017 Vapor bubbles. Annu. Rev. Fluid Mech. 49 (1), 221248.10.1146/annurev-fluid-010816-060221CrossRefGoogle Scholar
Prosperetti, A. & Plesset, M.S. 1978 Vapour-bubble growth in a superheated liquid. J. Fluid Mech. 85 (2), 349368.10.1017/S0022112078000671CrossRefGoogle Scholar
Prousevitch, A.A., Sahagian, D.L. & Anderson, A.T. 1993 Dynamics of diffusive bubble growth in magmas: isothermal case. J. Geophys. Res.: Solid Earth 98 (B12), 2228322307.10.1029/93JB02027CrossRefGoogle Scholar
Proussevitch, A.A. & Sahagian, D.L. 1996 Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J. Geophys. Res.: Solid Earth 101 (B8), 1744717455.10.1029/96JB01342CrossRefGoogle Scholar
Proussevitch, A.A. & Sahagian, D.L. 1998 Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. J. Geophys. Res.: Solid Earth 103 (B8), 1822318251.10.1029/98JB00906CrossRefGoogle Scholar
Robinson, A.J. & Judd, R.L. 2004 The dynamics of spherical bubble growth. Intl J. Heat Mass Transfer 47 (23), 51015113.10.1016/j.ijheatmasstransfer.2004.05.023CrossRefGoogle Scholar
Rosner, D.E. & Epstein, M. 1972 Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids. Chem. Engng Sci. 27 (1), 6988.10.1016/0009-2509(72)80142-8CrossRefGoogle Scholar
Russell, J.K., Hess, K.-U. & Dingwell, D.B. 2022 Models for viscosity of geological melts. Rev. Mineral. Geochem. 87 (1), 841885.10.2138/rmg.2022.87.18CrossRefGoogle Scholar
Schimpf, M. & Semenov, S. 2004 Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures. Phys. Rev. E, Stat. Nonlinear Soft Matt. Phys. 70, 031202.10.1103/PhysRevE.70.031202CrossRefGoogle ScholarPubMed
Scriven, L.E. 1959 On the dynamics of phase growth. Chem. Engng Sci. 10 (1), 113.10.1016/0009-2509(59)80019-1CrossRefGoogle Scholar
Shchekin, A.K., Kuchma, A.E. & Aksenova, E.V. 2023 Effects of viscous and capillary forces on the growth rates of gas bubbles in supersaturated liquid-gas solutions. Physica A: Statist. Mech. Appl. 609, 128303.10.1016/j.physa.2022.128303CrossRefGoogle Scholar
Sparks, R.S.J. 1978 The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geoth. Res. 3 (1), 137.10.1016/0377-0273(78)90002-1CrossRefGoogle Scholar
Stolper, E. 1982 Water in silicate glasses: an infrared spectroscopic study. Contribut. Mineral. Petrol. 81, 117.10.1007/BF00371154CrossRefGoogle Scholar
Toramaru, A. 1995 Numerical study of nucleation and growth of bubbles in viscous magmas. J. Geophys. Res.: Solid Earth 100 (B2), 19131931.10.1029/94JB02775CrossRefGoogle Scholar
Wang, Q., Gu, J., Li, Z. & Yao, W. 2017 Dynamic modeling of bubble growth in vapor-liquid phase change covering a wide range of superheats and pressures. Chem. Engng Sci. 172, 169181.10.1016/j.ces.2017.06.033CrossRefGoogle Scholar
Yamada, K., Tanaka, H., Nakazawa, K. & Emori, H. 2005 A new theory of bubble formation in magma. J. Geophys. Res. Solid Earth 110 (B2), 117.10.1029/2004JB003113CrossRefGoogle Scholar
Zel’dovich, Y.B. & Raizer, Y.P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar
Zhang, Y. & Gan, T. 2022 Diffusion in melts and magmas. Rev. Mineral. Geochem. 87, 283337.10.2138/rmg.2022.87.07CrossRefGoogle Scholar
Zhdanov, V.M. 2017 Slip and barodiffusion phenomena in slow flows of a gas mixture. Phys. Rev. E 95, 033106.10.1103/PhysRevE.95.033106CrossRefGoogle Scholar