Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-09-11T22:49:57.680Z Has data issue: false hasContentIssue false

Crystal growth at a liquid–liquid interface upon drop impact

Published online by Cambridge University Press:  01 September 2025

Marion Berry
Affiliation:
Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
Christophe Josserand
Affiliation:
Laboratoire d’Hydrodynamique (LadHyX), UMR 7646 CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
Anniina Salonen
Affiliation:
Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
François Boulogne*
Affiliation:
Laboratoire de Physique des Solides, UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
*
Corresponding author: François Boulogne, francois.boulogne@cnrs.fr

Abstract

The crystallisation that occurs when a drop is in contact with a cold surface is a particularly challenging phenomenon to capture experimentally and describe theoretically. The situation of a liquid–liquid interface, where crystals appear on a mobile interface is scarcely studied although it provides a defect-free interface. In this paper, we quantify the dynamics of crystals appearing upon the impact of a drop on a cool liquid bath. We rationalise our observations with a model considering that crystals appear at a constant rate depending on the thermal shock on the expanding interface. This model provides dimensionless curves on the number and the surface area of crystals that we compare with our experimental measurements.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdulagatov, I.M. & Magomedov, U.B. 1994 Thermal conductivity of aqueous solutions of NaCl and KCI at high pressures. Intl J. Thermophys. 15 (3), 401413.CrossRefGoogle Scholar
Aleksandrov, A.A., Dzhuraeva, E.V. & Utenkov, V.F. 2013 Thermal conductivity of sodium chloride aqueous solutions. Therm. Engng 60 (3), 190194.CrossRefGoogle Scholar
Bernard, R., Baumgartner, D., Brenn, G., Planchette, C., Weigand, B. & Lamanna, G. 2021 Miscibility and wettability: how interfacial tension influences droplet impact onto thin wall films. J. Fluid Mech. 908, A36.CrossRefGoogle Scholar
Berry, M., Josserand, C., Salonen, A. & Boulogne, F. 2024 Flat-cupped transition in freezing drop impacts. Phys. Rev. Fluids 9, 103602.CrossRefGoogle Scholar
Boeker, E. & Grondelle, R.V. 2011 Environmental Physics: Sustainable Energy and Climate Change. John Wiley & Sons.CrossRefGoogle Scholar
Chan, E.-S., Lee, B.-B., Ravindra, P. & Poncelet, D. 2009 Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J. Colloid Interface Sci. 338 (1), 6372.CrossRefGoogle ScholarPubMed
Chen, C.-T.A. 1982 Specific heat capacities of aqueous sodium chloride solutions at high pressures. J. Chem. Engng Data 27 (3), 356358.CrossRefGoogle Scholar
Chen, N., Chen, H. & Amirfazli, A. 2017 Drop impact onto a thin film: miscibility effect. Phys. Fluids 29 (9), 092106.CrossRefGoogle Scholar
Cossali, G.E., Coghe, A. & Marengo, M. 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22 (6), 463472.CrossRefGoogle Scholar
Denkov, N., Tcholakova, S., Lesov, I., Cholakova, D. & Smoukov, S.K. 2015 Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature 528, 392.CrossRefGoogle ScholarPubMed
Edgerton, H.E. 1954 Flash!: Seeing the Unseen By Ultra High-speed Photography.Google Scholar
Elsen, A., Festersen, S., Runge, B., Koops, C.T., Ocko, B.M., Deutsch, M., Seeck, O.H., Murphy, B.M. & Magnussen, O.M. 2013 In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface. Proc. Natl Acad. Sci. USA 110 (17), 66636668.CrossRefGoogle ScholarPubMed
Grivet, R., Monier, A., Huerre, A., Josserand, C. & Séon, T. 2022 Contact line catch up by growing ice crystals. Phys. Rev. Lett. 128, 254501.CrossRefGoogle ScholarPubMed
Guttman, S., Sapir, Z., Schultz, M., Butenko, A.V., Ocko, B.M., Deutsch, M. & Sloutskin, E. 2016 How faceted liquid droplets grow tails. Proc. Natl Acad. Sci. USA 113 (3), 493496.CrossRefGoogle ScholarPubMed
Herbaut, R., Brunet, P., Limat, L. & Royon, L. 2019 Liquid spreading on cold surfaces: solidification-induced stick-slip dynamics. Phys. Rev. Fluids 4, 033603.CrossRefGoogle Scholar
Kant, P., Koldeweij, R.B.J., Harth, K., van Limbeek, M.A.J. & Lohse, D. 2020 Fast-freezing kinetics inside a droplet impacting on a cold surface. Proc. Natl Acad. Sci. USA 117 (6), 27882794.CrossRefGoogle ScholarPubMed
Kharlamova, A., Boulogne, F., Fontaine, P., Rouzière, S., Hemmerle, A., Goldmann, M.Salonen, A. 2024 Interface-templated crystal growth in sodium dodecyl sulfate solutions with NaCl. Langmuir 40, 8490.CrossRefGoogle ScholarPubMed
Kirkpatrick, R.J. 1975 Crystal growth from the melt: a review. Am. Mineral. 60 (9), 798814.Google Scholar
Koldeweij, R.B.J., Kant, P., Harth, K., de Ruiter, R., Gelderblom, H., Snoeijer, J.H., Lohse, D.van Limbeek, M.A.J. 2021 Initial solidification dynamics of spreading droplets. Phys. Rev. Fluids 6, L121601.CrossRefGoogle Scholar
Kulkarni, V., Tamvada, S., Shirdade, N., Saneie, N., Lolla, V.Y., Batheyrameshbapu, V.Anand, S. 2024 Increased solidification delays fragmentation and suppresses rebound of impacting drops. Phys. Rev. Fluids 9 (5), 053604.CrossRefGoogle Scholar
Lee, D., Beesabathuni, S.N. & Shen, A.Q. 2015 Shape-tunable wax microparticle synthesis via microfluidics and droplet impact. Biomicrofluidics 9 (6), 064114.CrossRefGoogle ScholarPubMed
Motzkus, C., Gensdarmes, F. & Géhin, E. 2009 Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. J. Aerosol Sci. 40 (8), 680692.CrossRefGoogle Scholar
Mullin, J.W. 2001 Crystallization (Fourth Edition), Chapter 5 - Nucleation, pp. 181215. Elsevier.Google Scholar
Oliver, M.J. & Calvert, P.D. 1975 Homogeneous nucleation of n-alkanes measured by differential scanning calorimetry. J. Cryst. Growth 30 (3), 343351.CrossRefGoogle Scholar
Ramalingam, A. & Arumugam, S. 2012 Experimental study on specific heat of hot brine for salt gradient solar pond application. Int. J. ChemTech Res. 4, 6.Google Scholar
Rao, C.N.R. & Kalyanikutty, K.P. 2008 The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials. Accounts Chem. Res. 41 (4), 489499.CrossRefGoogle ScholarPubMed
Roisman, I.V., van Hinsberg, N.P. & Tropea, C. 2008 Propagation of a kinematic instability in a liquid layer: capillary and gravity effects. Phys. Rev. E 77, 046305.CrossRefGoogle Scholar
de Ruiter, R., Colinet, P., Brunet, P., Snoeijer, J.H. & Gelderblom, H. 2017 Contact line arrest in solidifying spreading drops. Phys. Rev. Fluids 2, 043602.CrossRefGoogle Scholar
Schremb, M., Campbell, J.M., Christenson, H.K. & Tropea, C. 2017 a Ice layer spreading along a solid substrate during solidification of supercooled water: experiments and modeling. Langmuir 33 (19), 48704877.CrossRefGoogle ScholarPubMed
Schremb, M., Roisman, I.V. & Tropea, C. 2017 b Transient effects in ice nucleation of a water drop impacting onto a cold substrate. Phys. Rev. E 95, 022805.CrossRefGoogle ScholarPubMed
Thiévenaz, V., Séon, T. & Josserand, C. 2019 Solidification dynamics of an impacted drop. J. Fluid Mech. 874, 756773.CrossRefGoogle Scholar
Tropea, C. & Marengo, M. 1999 The impact of drops on walls and films. Multiphase Sci, Technol, 11 (1), 1936.CrossRefGoogle Scholar
Vander Wal, R.L., Berger, G.M. & Mozes, S.D. 2006 a Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 40 (1), 3352.CrossRefGoogle Scholar
Vander Wal, R.L., Berger, G.M. & Mozes, S.D. 2006 b The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40 (1), 5359.Google Scholar
Wagstaff, F.E. 1968 Crystallization kinetics of internally nucleated vitreous silica. J. Am. Ceram. Soc. 51 (8), 449453.CrossRefGoogle Scholar
Weiss, D.A. & Yarin, A.L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.CrossRefGoogle Scholar
Yaws, C.L. 1999 Chemical Properties Handbook. McGraw-Hill Education.Google Scholar
Supplementary material: File

Berry et al. supplementary movie 1

Hexadecane drop impact at $v_0 = 2.8 \, m/s$ for two thermal shock, $\Delta T_{mc} = 8$ °C and $\Delta T_{mc} = 12.5$ °C
Download Berry et al. supplementary movie 1(File)
File 2.2 MB
Supplementary material: File

Berry et al. supplementary movie 2

Outlines of crystals on hexadecane drop impact at $v_0 = 2.8$ m/s and $\Delta T_{mc} = 12.5$ °C
Download Berry et al. supplementary movie 2(File)
File 1.2 MB