Hostname: page-component-cb9f654ff-d5ftd Total loading time: 0 Render date: 2025-08-29T15:41:53.988Z Has data issue: false hasContentIssue false

Coupling regimes between particles and Kelvin–Helmholtz billows in turbidity currents at moderate Reynolds number

Published online by Cambridge University Press:  07 August 2025

Jiafeng Xie
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Peng Hu
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China
Dingyi Pan*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China
*
Corresponding author: Dingyi Pan, dpan@zju.edu.cn

Abstract

Turbidity currents (TCs) are a common kind of particle-laden flow in underwater natural environments. This work employs a Eulerian–Lagrangian model to investigate the dynamic regimes of lock-exchange TC in a moderate flow Reynolds number range (${Re} = 1716-3836$) as well as the formation and evolution mechanisms of interfacial Kelvin–Helmholtz (KH) billows composed of a fluid–particle mixture. The results demonstrate that a fluid streak with high stretching at the interface, which twists and takes on a braided structure, is the key to the onset of KH instability. An increase in ${\textit{Re}}$ results in a higher interfacial fluid velocity gradient that intensifies the shear instability, and an increase in the convergent fluid force acting on the particles. This provides an explanation for the significant increases both in quantity and strength of KH vortices as ${\textit{Re}}$ rises. The enhanced KH vortices contribute to particle suspension and streamwise transport at larger ${\textit{Re}}$, leading to an extension in the duration of the slumping stage, which exhibits a constant forward velocity regime. The spatially continuous braided structure in the vorticity sheet region is responsible for the intriguing merging phenomenon of interfacial vortices. Furthermore, TC kinetic energy increases with the increasing ${\textit{Re}}$, and the system dissipation rate decreases in the early and middle stages of the TC. This behaviour may be correlated to the reducing shear between the TC and ambient fluid by interfacial KH billows. Regarding the turbulent kinetic energy dissipation of interfacial vortices, normal strain predominates in the middle stage, while shear deformation is most prevalent in the early and later stages.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abd El-Gawad, S., Cantelli, A., Pirmez, C., Minisini, D., Sylvester, Z. & Imran, J. 2012 Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger delta slope. J. Geophys. Res.: Oceans 117 (C5), C05026.10.1029/2011JC007538CrossRefGoogle Scholar
Afkhami, M., Hassanpour, A., Fairweather, M. & Njobuenwu, D.O. 2015 Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow. Comput. Chem. Engng 78, 2438.10.1016/j.compchemeng.2015.04.003CrossRefGoogle Scholar
Alobaid, F., Ströhle, J. & Epple, B. 2013 Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv. Powder Technol. 24 (1), 403415.10.1016/j.apt.2012.09.003CrossRefGoogle Scholar
Amy, L.A., Hogg, A.J., Peakall, J. & Talling, P.J. 2005 Abrupt transitions in gravity currents. J. Geophy. Res.: Earth Surf. 110 (F3), F03001.Google Scholar
Arthur, R.S. & Fringer, O.B. 2014 The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech. 761, 360398.10.1017/jfm.2014.641CrossRefGoogle Scholar
Baas, J.H., McCaffrey, W.D., Haughton, P.D.W. & Choux, C. 2005 Coupling between suspended sediment distribution and turbulence structure in a laboratory turbidity current. J. Geophys. Res.: Oceans 110 (C11), C11015.10.1029/2004JC002668CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point–particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.10.1016/j.ijmultiphaseflow.2009.02.013CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Balasuriya, S., Kalampattel, R. & Ouellette, N.T. 2016 Hyperbolic neighbourhoods as organizers of finite-time exponential stretching. J. Fluid Mech. 807, 509545.10.1017/jfm.2016.633CrossRefGoogle Scholar
Bell, D., Kane, I.A., Pontén, A.S.M., Flint, S.S., Hodgson, D.M. & Barrett, B.J. 2018 Spatial variability in depositional reservoir quality of deep-water channel-fill and lobe deposits. Mar. Petrol. Geol. 98, 97115.10.1016/j.marpetgeo.2018.07.023CrossRefGoogle Scholar
Bonnecaze, R.T., Huppert, H.E. & Lister, J.R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.10.1017/S002211209300148XCrossRefGoogle Scholar
Browand, F.K. & Winant, C.D. 1973 Laboratory observations of shear-layer instability in a stratified fluid. Boundary Layer Meteorol. 5 (1-2), 6777.10.1007/BF02188312CrossRefGoogle Scholar
Cantero, M.I., Balachandar, S. & García, M.H. 2008 An Eulerian–Eulerian model for gravity currents driven by inertial particles. Intl J. Multiphase Flow 34 (5), 484501.10.1016/j.ijmultiphaseflow.2007.09.006CrossRefGoogle Scholar
Cantero, M.I., Lee, J.R., Balachandar, S. & Garcia, M.H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.10.1017/S0022112007005769CrossRefGoogle Scholar
Carpenter, J.R., Tedford, E.W., Rahmani, M. & Lawrence, G.A. 2010 Holmboe wave fields in simulation and experiment. J. Fluid Mech. 648, 205223.10.1017/S002211200999317XCrossRefGoogle Scholar
Carpenter, J.R., Lawrence, G.A. & Smyth, W.D. 2007 Evolution and mixing of asymmetric Holmboe instabilities. J. Fluid Mech. 582, 103132.10.1017/S0022112007005988CrossRefGoogle Scholar
Carter, L., Gavey, R., Talling, P. & Liu, J. 2014 Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography 27 (2), 5867.10.5670/oceanog.2014.40CrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53 (1), 113145.10.1146/annurev-fluid-042320-100458CrossRefGoogle Scholar
Caulfield, C.P. & Peltier, W.R. 2000 The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413, 147.10.1017/S0022112000008284CrossRefGoogle Scholar
Cerretelli, C. & Williamson, C.H.K. 2003 The physical mechanism for vortex merging. J. Fluid Mech. 475, 4177.10.1017/S0022112002002847CrossRefGoogle Scholar
Corcos, G.M. & Sherman, F.S. 1984 The mixing layer: deterministic models of a turbulent flow. Part 1. Introduction and the two-dimensional flow. J. Fluid Mech. 139, 2965.10.1017/S0022112084000252CrossRefGoogle Scholar
Corcos, G.M. & Sherman, F.S. 1976 Vorticity concentration and the dynamics of unstable free shear layers. J. Fluid Mech. 73 (2), 241264.10.1017/S0022112076001365CrossRefGoogle Scholar
Covault, J.A., Kostic, S., Paull, C.K., Sylvester, Z. & Fildani, A. 2017 Cyclic steps and related supercritical bedforms: building blocks of deep-water depositional systems, Western North America. Mar. Geol. 393, 420.10.1016/j.margeo.2016.12.009CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.10.1680/geot.1979.29.1.47CrossRefGoogle Scholar
De Rooij, F. & Dalziel, S.B. 2001 Time-and space-resolved measurements of deposition under turbidity currents. Particulate Gravity Curr., 207215.Google Scholar
De Silva, I.P.D., Fernando, H.J.S., Eaton, F. & Hebert, D. 1996 Evolution of Kelvin–Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett. 143 (1–4), 217231.10.1016/0012-821X(96)00129-XCrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20 (1), 153159.10.1016/0301-9322(94)90011-6CrossRefGoogle Scholar
Dimotakis, P.E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.10.1017/S0022112099007946CrossRefGoogle Scholar
Dong, W., Tedford, E.W., Rahmani, M. & Lawrence, G.A. 2019 Sensitivity of vortex pairing and mixing to initial perturbations in stratified shear flows. Phys. Rev. Fluids 4 (6), 063902.10.1103/PhysRevFluids.4.063902CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2015 High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents. Phys. Fluids 27 (5), 056604.10.1063/1.4921191CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2014 Two-and three-dimensional direct numerical simulation of particle-laden gravity currents. Comput. Geosci. 63, 916.10.1016/j.cageo.2013.10.006CrossRefGoogle Scholar
Fernandez Luque, R. & Van Beek, R. 1976 Erosion and transport of bed-load sediment. J. Hydraul. Res. 14 (2), 127144.10.1080/00221687609499677CrossRefGoogle Scholar
Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E. & Kulikov, E.A. 2005 The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar. Geol. 215 (1-2), 4557.10.1016/j.margeo.2004.11.007CrossRefGoogle Scholar
Fontane, J. & Joly, L. 2008 The stability of the variable-density Kelvin–Helmholtz billow. J. Fluid Mech. 612, 237260.10.1017/S0022112008002966CrossRefGoogle Scholar
Francisco, E.P., Espath, L.F.R. & Silvestrini, J.H. 2017 Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration. Appl. Math. Model. 49, 739752.10.1016/j.apm.2017.02.051CrossRefGoogle Scholar
Gatignol, R. 1983 The faxén formulae for a rigid particle in an unsteady non-uniform stokes flow. Journal de Mecanique Theorique et Appliquee 1 (2), 143160.Google Scholar
Geyer, W.R. & Smith, J.D. 1987 Shear instability in a highly stratified estuary. J. Phys. Oceanogr. 17 (10), 16681679.10.1175/1520-0485(1987)017<1668:SIIAHS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Gladstone, C., Phillips, J.C. & Sparks, R.S.J. 1998 Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45 (5), 833843.10.1046/j.1365-3091.1998.00189.xCrossRefGoogle Scholar
Gladstone, C. & Woods, A.W. 2000 On the application of box models to particle-driven gravity currents. J. Fluid Mech. 416, 187195.10.1017/S0022112000008879CrossRefGoogle Scholar
Gonzalez-Juez, E., Meiburg, E., Tokyay, T. & Constantinescu, G. 2010 Gravity current flow past a circular cylinder: forces, wall shear stresses and implications for scour. J. Fluid Mech. 649, 69102.10.1017/S002211200999334XCrossRefGoogle Scholar
Gray, T.E., Alexander, J. & Leeder, M.R. 2005 Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology 52 (3), 467488.10.1111/j.1365-3091.2005.00705.xCrossRefGoogle Scholar
Hage, S. et al. 2019 Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophys. Res. Lett. 46 (20), 1131011320.10.1029/2019GL084526CrossRefGoogle ScholarPubMed
Harang, A., Thual, O., Brancher, P. & Bonometti, T. 2014 Kelvin–Helmholtz instability in the presence of variable viscosity for mudflow resuspension in estuaries. Environ. Fluid Mech. 14 (4), 743769.10.1007/s10652-014-9337-4CrossRefGoogle Scholar
van Haren, H., Gostiaux, L., Morozov, E. & Tarakanov, R. 2014 Extremely long Kelvin–Helmholtz billow trains in the Romanche Fracture Zone. Geophys. Res. Lett. 41 (23), 84458451.10.1002/2014GL062421CrossRefGoogle Scholar
Härtel, C., Carlsson, F. & Thunblom, M. 2000 a Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech. 418, 213229.10.1017/S0022112000001270CrossRefGoogle Scholar
Härtel, C., Meiburg, E. & Necker, F. 2000 b Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189212.10.1017/S0022112000001221CrossRefGoogle Scholar
He, Z., Zhao, L., Hu, P., Yu, C. & Lin, Y.-T. 2018 Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Adv. Water Resour. 119, 164177.10.1016/j.advwatres.2018.07.008CrossRefGoogle Scholar
He, Z., Zhao, L., Zhu, R. & Hu, P. 2019 Separation of particle-laden gravity currents down a slope in linearly stratified environments. Phys. Fluids 31 (10), 106602.10.1063/1.5116067CrossRefGoogle Scholar
Holmboe, J. 1962 On the behavior of symmetric waves in stratified shear layers. Geofysiske Publikasjoner 24, 67113.Google Scholar
Horner‐Devine, A.R. & Chickadel, C.C. 2017 Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow. Geophys. Res. Lett. 44 (10), 50015007.10.1002/2017GL072997CrossRefGoogle Scholar
Howard, L.N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10 (4), 509512.10.1017/S0022112061000317CrossRefGoogle Scholar
Howland, C.J., Taylor, J.R. & Caulfield, C.P. 2018 Testing linear marginal stability in stratified shear layers. J. Fluid Mech. 839, R4.10.1017/jfm.2018.79CrossRefGoogle Scholar
Hu, P., Tao, J., Li, W. & He, Z. 2020 Layer-averaged numerical study on effect of Reynolds number on turbidity currents. J. Hydraul. Res. 58 (4), 628637.10.1080/00221686.2019.1647888CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research. Proceedings of the Summer Program 1988, pp. 193208. Center for Turbulence Research.Google Scholar
Hussain, A., Haughton, P.D.W., Shannon, P.M., Turner, J.N., Pierce, C.S., Obradors‐Latre, A., Barker, S.P., Martinsen, O.J. & Tosca, N. 2020 High-resolution x-ray fluorescence profiling of hybrid event beds: implications for sediment gravity flow behaviour and deposit structure. Sedimentology 67 (6), 28502882.10.1111/sed.12722CrossRefGoogle Scholar
Jackson, L., Hallberg, R. & Legg, S. 2008 A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr. 38 (5), 10331053.10.1175/2007JPO3779.1CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Jing, L., Kwok, C.Y., Leung, Y.F. & Sobral, Y.D. 2016 Extended CFD–DEM for free‐surface flow with multi‐size granules. Intl J. Numer. Anal. Meth. Geomech. 40 (1), 6279.10.1002/nag.2387CrossRefGoogle Scholar
Kafui, K.D., Thornton, C. & Adams, M.J. 2002 Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem. Engng Sci. 57 (13), 23952410.10.1016/S0009-2509(02)00140-9CrossRefGoogle Scholar
Khavasi, E. & Firoozabadi, B. 2018 Experimental study on the interfacial instability of particle-laden stratified shear flows. J. Braz. Soc. Mech. Sci. 40 (4), 118.Google Scholar
Khavasi, E. & Firoozabadi, B. 2019 Linear spatial stability analysis of particle-laden stratified shear layers. J. Braz. Soc. Mech. Sci. 41 (6), 110.Google Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Intl J. 12 (2-3), 140152.10.1504/PCFD.2012.047457CrossRefGoogle Scholar
Kneller, B. & Buckee, C. 2000 The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47 (s1), 6294.10.1046/j.1365-3091.2000.047s1062.xCrossRefGoogle Scholar
Kneller, B., Nasr-Azadani, M.M., Radhakrishnan, S. & Meiburg, E. 2016 Long-range sediment transport in the world’s oceans by stably stratified turbidity currents. J. Geophys. Res.: Oceans 121 (12), 86088620.10.1002/2016JC011978CrossRefGoogle Scholar
Kostaschuk, R., Nasr‐Azadani, M.M., Meiburg, E., Wei, T., Chen, Z., Negretti, M.E., Best, J., Peakall, J. & Parsons, D.R. 2018 On the causes of pulsing in continuous turbidity currents. J. Geophys. Res.: Earth Surf. 123 (11), 28272843.10.1029/2018JF004719CrossRefGoogle Scholar
Lawrence, G.A., Browand, F.K.PP. & Redekopp, L.G. 1991 The stability of a sheared density interface. Phys. Fluids A: Fluid Dyn. 3 (10), 23602370.10.1063/1.858175CrossRefGoogle Scholar
Lee, C.-H. 2019 Multi-phase flow modeling of submarine landslides: transformation from hyperconcentrated flows into turbidity currents. Adv. Water Resour. 131, 103383.10.1016/j.advwatres.2019.103383CrossRefGoogle Scholar
Li, Y., Xu, Y. & Thornton, C. 2005 A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160 (3), 219228.10.1016/j.powtec.2005.09.002CrossRefGoogle Scholar
Lipinski, D. & Mohseni, K. 2010 A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos: Interdisciplinary J. Nonlinear Sci. 20 (1), 017504.10.1063/1.3270049CrossRefGoogle ScholarPubMed
Liu, C.-L., Kaminski, A.K. & Smyth, W.D. 2022 The butterfly effect and the transition to turbulence in a stratified shear layer. J. Fluid Mech. 953, A43.10.1017/jfm.2022.985CrossRefGoogle Scholar
Liu, C.-L., Kaminski, A.K. & Smyth, W.D. 2024 Turbulence and mixing from neighbouring stratified shear layers. J. Fluid Mech. 987, A8.10.1017/jfm.2024.387CrossRefGoogle Scholar
Liu, D. & van Wachem, B. 2019 Comprehensive assessment of the accuracy of CFD-DEM simulations of bubbling fluidized beds. Powder Technol. 343, 145158.10.1016/j.powtec.2018.11.025CrossRefGoogle Scholar
Liu, X., Deen, N.G. & Tang, Y. 2021 On the treatment of bed-to-wall heat transfer in CFD-DEM simulations of gas-fluidized beds. Chem. Engng Sci. 236, 116492.10.1016/j.ces.2021.116492CrossRefGoogle Scholar
Lombardi, V., Adduce, C. & La Rocca, M. 2018 Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations. J. Hydraul. Res. 56 (3), 399411.10.1080/00221686.2017.1372817CrossRefGoogle Scholar
Loth, E. & Dorgan, A.J. 2009 An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech. 9 (2), 187206.10.1007/s10652-009-9123-xCrossRefGoogle Scholar
Lu, Y., Liu, X., Xie, X., Sun, J., Yang, Y. & Guo, X. 2024 Particle-scale analysis on dynamic response of turbidity currents to sediment concentration and bedforms. Phys. Fluids 36 (3), 033316.10.1063/5.0191219CrossRefGoogle Scholar
Marino, B.M., Thomas, L.P. & Linden, P.F. 2005 The front condition for gravity currents. J. Fluid Mech. 536, 4978.10.1017/S0022112005004933CrossRefGoogle Scholar
Mashayek, A. & Peltier, W.R. 2012a The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 shear aligned convection, pairing, and braid instabilities. J. Fluid Mech. 708, 544.10.1017/jfm.2012.304CrossRefGoogle Scholar
Mashayek, A. & Peltier, W.R. 2012b The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 2 the influence of stratification. J. Fluid Mech. 708, 4570.10.1017/jfm.2012.294CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
McLaughlin, J.B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.10.1017/S0022112091001751CrossRefGoogle Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18 (1), 145147.10.1016/0301-9322(92)90012-6CrossRefGoogle Scholar
Meiburg, E., Radhakrishnan, S. & Nasr-Azadani, M. 2015 Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 67 (4), 040802.10.1115/1.4031040CrossRefGoogle Scholar
Miles, J.W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496508.10.1017/S0022112061000305CrossRefGoogle Scholar
Nasr-Azadani, M.M. & Meiburg, E. 2014 Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid Mech. 745, 409443.10.1017/jfm.2014.47CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2002 High-resolution simulations of particle-driven gravity currents. Intl J. Multiphase Flow 28 (2), 279300.10.1016/S0301-9322(01)00065-9CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2005 Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech. 545, 339372.10.1017/S0022112005006932CrossRefGoogle Scholar
Nie, Y.-P., Wang, X.-K. & Yan, X.-F. 2024 CFD-DEM-based evaluation of main-channel sediment transport processes subject to supplement from a steep tributary. Engng Geol. 333, 107498.10.1016/j.enggeo.2024.107498CrossRefGoogle Scholar
Ning, Z. & Ghadiri, M. 2006 Distinct element analysis of attrition of granular solids under shear deformation. Chem. Engng Sci. 61 (18), 59916001.10.1016/j.ces.2006.03.056CrossRefGoogle Scholar
Noh, Y. & Fernando, H.J.S. 1995 Onset of stratification in a mixed layer subjected to a stabilizing buoyancy flux. J. Fluid Mech. 304, 2746.10.1017/S0022112095004332CrossRefGoogle Scholar
Olsthoorn, J., Kaminski, A.K. & Robb, D.M. 2023 Dynamics of asymmetric stratified shear instabilities. Phys. Rev. Fluids 8 (2), 024501.10.1103/PhysRevFluids.8.024501CrossRefGoogle Scholar
Ooi, S.K., Constantinescu, G. & Weber, L. 2009 Numerical simulations of lock-exchange compositional gravity current. J. Fluid Mech. 635, 361388.10.1017/S0022112009007599CrossRefGoogle Scholar
Ooi, S.K., Constantinescu, G. & Weber, L.J. 2007 2D large-eddy simulation of lock-exchange gravity current flows at high Grashof numbers. J. Hydraul. Engng 133 (9), 10371047.10.1061/(ASCE)0733-9429(2007)133:9(1037)CrossRefGoogle Scholar
Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F. & Armenio, V. 2016 Mixing in lock-release gravity currents propagating up a slope. Phys. Fluids 28 (5), 056604.10.1063/1.4948760CrossRefGoogle Scholar
Pähtz, T., Clark, A.H., Valyrakis, M. & Durán, O. 2020 The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments. Rev. Geophys. 58 (1), e2019RG000679.10.1029/2019RG000679CrossRefGoogle Scholar
Pähtz, T., Liu, Y., Xia, Y., Hu, P., He, Z. & Tholen, K. 2021 Unified model of sediment transport threshold and rate across weak and intense subaqueous bedload, windblown sand, and windblown snow. J. Geophys. Res.: Earth Surf. 126 (4), e2020JF005859.10.1029/2020JF005859CrossRefGoogle Scholar
Parker, G., Fukushima, Y. & Pantin, H.M. 1986 Self-accelerating turbidity currents. J. Fluid Mech. 171, 145181.10.1017/S0022112086001404CrossRefGoogle Scholar
Parker, G., Garcia, M., Fukushima, Y. & Yu, W. 1987 Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 25 (1), 123147.10.1080/00221688709499292CrossRefGoogle Scholar
Parker, J.P., Caulfield, C.P. & Kerswell, R.R. 2019 Kelvin–Helmholtz billows above Richardson number. J. Fluid Mech. 879, R1.10.1017/jfm.2019.725CrossRefGoogle Scholar
Parsons, J.D. & Garcia, M.H. 1998 Similarity of gravity current fronts. Phys. Fluids 10 (12), 32093213.10.1063/1.869848CrossRefGoogle Scholar
Pelmard, J., Norris, S. & Friedrich, H. 2020 Statistical characterisation of turbulence for an unsteady gravity current. J. Fluid Mech. 901, A7.10.1017/jfm.2020.528CrossRefGoogle Scholar
Rahmani, M., Lawrence, G.A. & Seymour, B.R. 2014 a The effect of Reynolds number on mixing in Kelvin–Helmholtz billows. J. Fluid Mech. 759, 612641.10.1017/jfm.2014.588CrossRefGoogle Scholar
Rahmani, M., Seymour, B. & Lawrence, G. 2014 b The evolution of large and small-scale structures in Kelvin–Helmholtz instabilities. Environ. Fluid Mech. 14 (6), 12751301.10.1007/s10652-014-9343-6CrossRefGoogle Scholar
Rist, U., Weinschenk, M. & Wenzel, C. 2023 Investigation of Lagrangian areas of minimal stretching (LAMS) in a turbulent boundary layer. J. Fluid Mech. 970, A31.10.1017/jfm.2023.635CrossRefGoogle Scholar
Rottman, J.W. & Simpson, J.E. 1983 Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95110.10.1017/S0022112083002979CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Salehipour, H., Caulfield, C.P. & Peltier, W.R. 2016 a Turbulent mixing due to the Holmboe wave instability at high Reynolds number. J. Fluid Mech. 803, 591621.10.1017/jfm.2016.488CrossRefGoogle Scholar
Salehipour, H., Peltier, W.R., Whalen, C.B. & MacKinnon, J.A. 2016 b A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophys. Res. Lett. 43 (7), 33703379.10.1002/2016GL068184CrossRefGoogle Scholar
Schmeeckle, M.W. 2014 Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res.: Earth Surf. 119 (6), 12401262.10.1002/2013JF002911CrossRefGoogle Scholar
Shin, J.O., Dalziel, S.B. & Linden, P.F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.10.1017/S002211200400165XCrossRefGoogle Scholar
Si, P., Shi, H. & Yu, X. 2018 Development of a mathematical model for submarine granular flows. Phys. Fluids 30 (8), 083302.10.1063/1.5030349CrossRefGoogle Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.10.1063/1.2912513CrossRefGoogle Scholar
Simpson, J.E. 1972 Effects of the lower boundary on the head of a gravity current. J. Fluid Mech. 53 (4), 759768.10.1017/S0022112072000461CrossRefGoogle Scholar
Simpson, J.E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14 (1), 213234.10.1146/annurev.fl.14.010182.001241CrossRefGoogle Scholar
Smyth, W.D., Carpenter, J.R. & Lawrence, G.A. 2007 Mixing in symmetric Holmboe waves. J. Phys. Oceanogr. 37 (6), 15661583.10.1175/JPO3037.1CrossRefGoogle Scholar
Smyth, W.D., Klaassen, G.P. & Peltier, W.R. 1988 Finite amplitude Holmboe waves. Geophys. Astrophys. Fluid Dyn. 43 (2), 181222.10.1080/03091928808213625CrossRefGoogle Scholar
Smyth, W.D. 2003 Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J. Fluid Mech. 497, 6798.10.1017/S0022112003006591CrossRefGoogle Scholar
Smyth, W. & Moum, J. 2012 Ocean mixing by Kelvin–Helmholtz instability. Oceanography 25 (2), 140149.10.5670/oceanog.2012.49CrossRefGoogle Scholar
Steenhauer, K., Tokyay, T. & Constantinescu, G. 2017 Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys. Fluids 29 (3), 036604.10.1063/1.4979063CrossRefGoogle Scholar
Stow, D.A.V. 2005 Sedimentary Rocks in the Field: A Color Guide. Gulf Professional Publishing.10.1201/b15204CrossRefGoogle Scholar
Sun, R. & Xiao, H. 2016 SediFoam: A general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Comput. Geosci. 89, 207219.10.1016/j.cageo.2016.01.011CrossRefGoogle Scholar
Sun, Y.-H., Zhang, W.-T., Wang, X.-L. & Liu, Q.-Q. 2020 Numerical study on immersed granular collapse in viscous regime by particle-scale simulation. Phys. Fluids 32 (7), 073313.10.1063/5.0015110CrossRefGoogle Scholar
Talling, P.J. et al. 2023 Detailed monitoring reveals the nature of submarine turbidity currents. Nat. Rev. Earth Environ. 4 (9), 642658.10.1038/s43017-023-00458-1CrossRefGoogle Scholar
Taylor, G.I. 1931 Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. Lond. A Math. Phys. Character 132 (820), 499523.Google Scholar
Tedford, E.W., Carpenter, J.R., Pawlowicz, R., Pieters, R. & Lawrence, G.A. 2009 Observation and analysis of shear instability in the Fraser River estuary. J. Geophys. Res.: Oceans 114 (C11), C11006.10.1029/2009JC005313CrossRefGoogle Scholar
Tom, J. & Bragg, A.D. 2019 Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871, 244270.10.1017/jfm.2019.337CrossRefGoogle Scholar
Tu, J., Fan, D., Lian, Q., Liu, Z., Liu, W., Kaminski, A. & Smyth, W. 2020 Acoustic observations of Kelvin–Helmholtz billows on an estuarine lutocline. J. Geophys. Res.: Oceans 125 (4), e2019JC015383.10.1029/2019JC015383CrossRefGoogle Scholar
Tu, J., Fan, D., Sun, F., Kaminski, A. & Smyth, W. 2022 Shear instabilities and stratified turbulence in an estuarine fluid mud. J. Phys. Oceanogr. 52 (10), 22572271.10.1175/JPO-D-21-0230.1CrossRefGoogle Scholar
Tu, J., Wu, J., Fan, D., Liu, Z., Zhang, Q. & Smyth, W. 2024 Shear instability and turbulent mixing by Kuroshio intrusion into the Changjiang river plume. Geophys. Res. Lett. 51 (20), e2024GL110957.10.1029/2024GL110957CrossRefGoogle Scholar
Turner, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.10.1017/S0022112086001222CrossRefGoogle Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.10.1146/annurev-fluid-010814-014637CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.10.1017/S0022112093002708CrossRefGoogle Scholar
Wang, S., Luo, K., Hu, C., Lin, J. & Fan, J. 2019 CFD-DEM simulation of heat transfer in fluidized beds: model verification, validation, and application. Chem. Engng Sci. 197, 280295.10.1016/j.ces.2018.12.031CrossRefGoogle Scholar
Wells, M.G. & Dorrell, R.M. 2021 Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 53 (1), 5983.10.1146/annurev-fluid-010719-060309CrossRefGoogle Scholar
Wesson, J.C. & Gregg, M.C. 1994 Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res.: Oceans 99 (C5), 98479878.10.1029/94JC00256CrossRefGoogle Scholar
Winant, C.D. & Browand, F.K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63 (2), 237255.10.1017/S0022112074001121CrossRefGoogle Scholar
Woods, J.D. 1968 Wave-induced shear instability in the summer thermocline. J. Fluid Mech. 32 (4), 791800.10.1017/S0022112068001035CrossRefGoogle Scholar
Xie, J., Hu, P., Pähtz, T., He, Z. & Cheng, N. 2022 Fluid-particle interaction regimes during the evolution of turbidity currents from a coupled LES/DEM model. Adv. Water Resour. 163, 104171.10.1016/j.advwatres.2022.104171CrossRefGoogle Scholar
Xie, J., Hu, P., Zhu, C., Yu, Z. & Pähtz, T. 2023 a Turbidity currents propagating down an inclined slope: particle auto-suspension. J. Fluid Mech. 954, A44.10.1017/jfm.2022.1041CrossRefGoogle Scholar
Xie, J., Zhu, C., Hu, P., Yu, Z. & Pan, D. 2023 b Particle segregation within bidisperse turbidity current evolution. J. Fluid Mech. 971, A16.10.1017/jfm.2023.623CrossRefGoogle Scholar
Xu, C., Stastna, M. & Deepwell, D. 2019 Spontaneous instability in internal solitary-like waves. Phys. Rev. Fluids 4 (1), 014805.10.1103/PhysRevFluids.4.014805CrossRefGoogle Scholar
Xu, J.P., Noble, M.A. & Rosenfeld, L.K. 2004 In-situ measurements of velocity structure within turbidity currents. Geophys. Res. Lett. 31 (9), L09311.10.1029/2004GL019718CrossRefGoogle Scholar
Xu, J.P., Sequeiros, O.E. & Noble, M.A. 2014 Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA. Deep Sea Res. I: Oceanogr. Res. Papers 89, 1134.10.1016/j.dsr.2014.04.001CrossRefGoogle Scholar
Yang, A.J.K., Timmermans, M.-L. & Lawrence, G.A. 2024 a Asymmetric Kelvin–Helmholtz instabilities in stratified shear flows. Phys. Rev. Fluids 9 (1), 014501.10.1103/PhysRevFluids.9.014501CrossRefGoogle Scholar
Yang, Y., Chen, J. & Wang, Y. 2024 b Particle plume dispersion with various incident velocities: particle–fluid interaction regimes from coupled discrete element-large eddy simulations. Phys. Fluids 36 (8), 083318.10.1063/5.0218848CrossRefGoogle Scholar
Yoshida, S., Ohtani, M., Nishida, S. & Linden, P.F. 1998 Mixing processes in a highly stratified river. Phys. Processes Lakes Oceans 54, 389400.10.1029/CE054p0389CrossRefGoogle Scholar
Zgheib, N., Bonometti, T. & Balachandar, S. 2015 Direct numerical simulation of cylindrical particle-laden gravity currents. Comput. Fluids 123, 2331.10.1016/j.compfluid.2015.09.001CrossRefGoogle Scholar
Zhao, J. & Shan, T. 2013 Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technol. 239, 248258.10.1016/j.powtec.2013.02.003CrossRefGoogle Scholar
Zhou, Z.Y., Kuang, S.B., Chu, K.W. & Yu, A.B. 2010 Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 482510.10.1017/S002211201000306XCrossRefGoogle Scholar