Hostname: page-component-68c7f8b79f-mk7jb Total loading time: 0 Render date: 2025-12-19T02:48:57.107Z Has data issue: false hasContentIssue false

Bispectral decomposition and energy transfer in a turbulent jet

Published online by Cambridge University Press:  18 December 2025

Akhil Nekkanti*
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology , Pasadena, CA, USA
Ethan Pickering
Affiliation:
Bayer Crop Science, Boston, MA, USA
Oliver T. Schmidt
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
Tim Colonius
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology , Pasadena, CA, USA
*
Corresponding author: Akhil Nekkanti, aknekkan@caltech.edu

Abstract

The triadic interactions and nonlinear energy transfer are investigated in a subsonic turbulent jet at $Re = 450\,000$. The primary focus is on the role of these interactions in the formation and attenuation of streaky structures. To this end, we employ bispectral mode decomposition, a technique that extracts coherent structures associated with dominant triadic interactions. A strong triadic correlation is identified between Kelvin–Helmholtz (KH) wavepackets and streaks: interactions between counter-rotating KH waves generates streamwise vortices, which subsequently give rise to streaks through the lift-up mechanism. The most energetic streaks occur at azimuthal wavenumber $m = 2$, with the dominant contributing triad being $[m_1, m_2, m_3] = [1, 1, 2]$. The spectral energy budget reveals that the net effect of nonlinear triadic interactions is an energy loss from the streaks. As these streaks convect downstream, they engage in further nonlinear interactions with other frequencies, which drain their energy and ultimately lead to their attenuation. Further analysis identifies the dominant scales and direction of energy transfer across different spatial regions of the jet. While the turbulent jet exhibits a forward energy cascade in a global sense, the direction of energy transfer varies locally: in the shear layer near the nozzle exit, triadic interactions among smaller scales dominate, resulting in an inverse energy cascade, whereas farther downstream, beyond the end of the potential core, interactions among larger scales prevail, leading to a forward cascade.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arndt, R.E.A., Long, D.F. & Glauser, M.N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.10.1017/S0022112097005089CrossRefGoogle Scholar
Bae, H.J., Lozano-Duran, A. & McKeon, B.J. 2021 Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows. J. Fluid Mech. 914, A3.10.1017/jfm.2020.857CrossRefGoogle Scholar
Batchelor, G.K. & Gill, A.E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.10.1017/S0022112062001421CrossRefGoogle Scholar
Benney, D.J. & Lin, C.C. 1960 On the secondary motion induced by oscillations in a shear flow. Phys. Fluids 3, 656657.10.1063/1.1706101CrossRefGoogle Scholar
Bolotnov, I.A., Lahey, R.T. Jr. Drew, D.A., Jansen, K.E. & Oberai, A.A. 2010 Spectral analysis of turbulence based on the DNS of a channel flow. Comput. Fluids 39, 640655.CrossRefGoogle Scholar
Boronin, S.A., Healey, J.J. & Sazhin, S.S. 2013 Non-modal stability of round viscous jets. J. Fluid Mech. 716, 96119.10.1017/jfm.2012.521CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. B/Fluids 47, 8096.10.1016/j.euromechflu.2014.03.005CrossRefGoogle Scholar
Brès, G.A., Ham, F.E., Nichols, J.W. & Lele, S.K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55, 11641184.10.2514/1.J055084CrossRefGoogle Scholar
Brès, G.A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T. & Schmidt, O.T. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.10.1017/jfm.2018.476CrossRefGoogle Scholar
Brès, G.A. & Lele, S.K. 2019 Modelling of jet noise: a perspective from large-eddy simulations. Phil. Trans. R. Soc. A 377, 20190081.10.1098/rsta.2019.0081CrossRefGoogle ScholarPubMed
Brillinger, D.R. 1965 An introduction to polyspectra. Annal. Math. Stat. 36, 13511374.10.1214/aoms/1177699896CrossRefGoogle Scholar
Broze, G. & Hussain, F. 1994 Nonlinear dynamics of forced transitional jets: periodic and chaotic attractors. J. Fluid Mech. 263, 93132.10.1017/S0022112094004040CrossRefGoogle Scholar
Broze, G. & Hussain, F. 1996 Transitions to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis. J. Fluid Mech. 311, 3771.10.1017/S0022112096002509CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.10.1017/jfm.2018.643CrossRefGoogle Scholar
Citriniti, J.H. & George, W.K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.10.1017/S0022112000001087CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.10.1017/S0022112087000624CrossRefGoogle Scholar
Corke, T.C. & Kusek, S.M. 1993 Resonance in axisymmetric jets with controlled helical-mode input. J. Fluid Mech. 249, 307336.10.1017/S0022112093001193CrossRefGoogle Scholar
Corke, T.C. & Mangano, R.A. 1989 Resonant growth of three-dimensional modes in transitioning Blasius boundary layers. J. Fluid Mech. 209, 93150.10.1017/S0022112089003058CrossRefGoogle Scholar
Corke, T.C., Shakib, F. & Nagib, H.M. 1991 Mode selection and resonant phase locking in unstable axisymmetric jets. J. Fluid Mech. 223, 253311.10.1017/S0022112091001428CrossRefGoogle Scholar
Craik, A.D.D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393413.10.1017/S0022112071002635CrossRefGoogle Scholar
Crighton, D.G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77, 397413.10.1017/S0022112076002176CrossRefGoogle Scholar
Crighton, D.G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.10.1017/S0022112090003299CrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.10.1017/S0022112071001745CrossRefGoogle Scholar
Dessup, T., Tuckerman, L.S., Wesfreid, J.E., Barkley, D. & Willis, A.P. 2018 Self-sustaining process in Taylor–Couette flow. Phys. Rev. Fluids 3, 123902.10.1103/PhysRevFluids.3.123902CrossRefGoogle Scholar
Domaradzki, J.A. & Rogallo, R.S. 1990 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2, 413426.10.1063/1.857736CrossRefGoogle Scholar
Garrett, C. & Munk, W. 1975 Space–time scales of internal waves: a progress report. J. Geophys. Res. 80, 291297.10.1029/JC080i003p00291CrossRefGoogle Scholar
Goparaju, H. & Gaitonde, D.V. 2022 Role of entropic instabilities in laminar–turbulent transition on a blunted flat plate. Phys. Rev. Fluids 7, 103901.10.1103/PhysRevFluids.7.103901CrossRefGoogle Scholar
Hajj, M.R., Miksad, R.W. & Powers, E.J. 1992 Subharmonic growth by parametric resonance. J. Fluid Mech. 236, 385413.10.1017/S0022112092001459CrossRefGoogle Scholar
Hajj, M.R., Miksad, R.W. & Powers, E.J. 1993 Fundamental–subharmonic interaction: effect of phase relation. J. Fluid Mech. 256, 403426.10.1017/S0022112093002824CrossRefGoogle Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.10.1017/S0022112010002892CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.10.1017/S0022112095000978CrossRefGoogle Scholar
Hasselmann, K., Munk, W. & MacDonald, G.J.F. 1963 Bispectra of ocean waves. In Symposium on Time Series Analysis, pp. 125139. John Wiley and Sons, Inc.Google Scholar
Herring, J.R. 1980 Theoretical calculations of turbulent bispectra. J. Fluid Mech. 97, 193204.10.1017/S0022112080002509CrossRefGoogle Scholar
Herring, J.R. & Métais, O. 1992 Spectral transfer and bispectra for turbulence with passive scalars. J. Fluid Mech. 235, 103121.10.1017/S0022112092001058CrossRefGoogle Scholar
Husain, H.S. & Hussain, F. 1995 Experiments on subharmonic resonance in a shear layer. J. Fluid Mech. 304, 343372.10.1017/S0022112095004459CrossRefGoogle Scholar
Jenkins, G.M. 1965 A survey of spectral analysis. J. R. Stat. Soc. C: Appl. Stat. 14, 232.Google Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.10.1063/1.4819081CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.10.1146/annurev-fluid-011212-140756CrossRefGoogle Scholar
Kusek, S.M., Corke, T.C. & Reisenthel, P. 1990 Seeding of helical modes in the initial region of an axisymmetric jet. Exp. Fluids 10, 116124.10.1007/BF00215019CrossRefGoogle Scholar
Lii, K.S., Rosenblatt, M. & Van Atta, C. 1976 Bispectral measurements in turbulence. J. Fluid Mech. 77, 4562.CrossRefGoogle Scholar
Long, T.A. & Petersen, R.A. 1992 Controlled interactions in a forced axisymmetric jet. Part 1. The distortion of the mean flow. J. Fluid Mech. 235, 3755.10.1017/S0022112092001010CrossRefGoogle Scholar
Maia, I., Jordan, P., Heidt, L., Colonius, T., Nekkanti, A. & Schmidt, O.T. 2021 Nonlinear dynamics of forced wavepackets in turbulent jets. In AIAA Aviation 2021 Forum, p. 2277. American Institute of Aeronautics and Astronautics, Inc. (AIAA).Google Scholar
Mankbadi, R.R., Wu, X. & Lee, S.S. 1993 A critical-layer analysis of the resonant triad in boundary-layer transition: nonlinear interactions. J. Fluid Mech. 256, 85106.10.1017/S0022112093002721CrossRefGoogle Scholar
McComas, C.H. & Bretherton, F.P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 13971412.10.1029/JC082i009p01397CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Michalke, A. 1977 Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness. Tech. Rep. NASA-TM-75190.Google Scholar
Moczarski, L., Treleaven, N.C., Oberleithner, K., Schmidt, S., Fischer, A. & Kaiser, T.L. 2022 Interaction of multiple linear helical modes in the turbulent flow field of an industrial fuel injection system. In AIAA SciTech 2022 Forum, p. 1061. American Institute of Aeronautics and Astronautics, Inc.Google Scholar
Moffatt, H.K. 2014 Note on the triad interactions of homogeneous turbulence. J. Fluid Mech. 741, R3.10.1017/jfm.2013.637CrossRefGoogle Scholar
Nekkanti, A., Colonius, T. & Schmidt, O.T. 2025 Nonlinear dynamics of vortex pairing in transitional jets. J. Fluid Mech. 1018, A32.10.1017/jfm.2025.10536CrossRefGoogle Scholar
Nekkanti, A., Maia, I.A., Jordan, P., Heidt, L., Colonius, T. & Schmidt, O.T. 2022 Triadic nonlinear interactions and acoustics of forced versus unforced turbulent jets. In 12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12), Osaka, Japan.Google Scholar
Nekkanti, A., Nidhan, S., Schmidt, O.T. & Sarkar, S. 2023 a Large-scale streaks in a turbulent bluff body wake. J. Fluid Mech. 974, A47.10.1017/jfm.2023.783CrossRefGoogle Scholar
Nekkanti, A. & Schmidt, O.T. 2021 Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD. J. Fluid Mech. 926, A26.10.1017/jfm.2021.681CrossRefGoogle Scholar
Nekkanti, A. & Schmidt, O.T. 2023 Gappy spectral proper orthogonal decomposition. J. Comput. Phys. 478, 111950.10.1016/j.jcp.2023.111950CrossRefGoogle Scholar
Nekkanti, A., Schmidt, O.T., Maia, I., Jordan, P., Heidt, L. & Colonius, T. 2023 b Bispectral mode decomposition of axisymmetrically and non-axisymmetrically forced turbulent jets. In AIAA Aviation 2023 Forum, p. 3651. American Institute of Aeronautics and Astronautics, Inc. (AIAA).Google Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Jordan, P. & Jaunet, V. 2019 Large-scale, streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.10.1017/jfm.2019.365CrossRefGoogle Scholar
Paschereit, C.O., Wygnanski, I. & Fiedler, H.E. 1995 Experimental investigation of subharmonic resonance in an axisymmetric jet. J. Fluid Mech. 283, 365407.10.1017/S0022112095002369CrossRefGoogle Scholar
Phillips, O.M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9, 193217.10.1017/S0022112060001043CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.10.1017/jfm.2020.301CrossRefGoogle Scholar
Pierrehumbert, R.T. & Widnall, S.E. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 5982.10.1017/S0022112082000044CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent Flows. IOP Publishing.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.10.1017/S0022112007004867CrossRefGoogle Scholar
Sandham, N.D. & Salgado, A.M. 2008 Nonlinear interaction model of subsonic jet noise. Phil. Trans. R. Soc. A 366, 27452760.10.1098/rsta.2008.0049CrossRefGoogle ScholarPubMed
Sasaki, K., Cavalieri, A.V.G., Jordan, P., Schmidt, O.T., Colonius, T. & Brès, G.A. 2017 High-frequency wavepackets in turbulent jets. J. Fluid Mech. 830, R2.10.1017/jfm.2017.659CrossRefGoogle Scholar
Schmidt, O.T. 2020 Bispectral mode decomposition of nonlinear flows. Nonlinear Dyn. 102, 24792501.10.1007/s11071-020-06037-zCrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58, 10231033.10.2514/1.J058809CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.10.1017/jfm.2018.675CrossRefGoogle Scholar
Shaabani-Ardali, L., Sipp, D. & Lesshafft, L. 2019 Vortex pairing in jets as a global Floquet instability: modal and transient dynamics. J. Fluid Mech. 862, 951989.10.1017/jfm.2018.977CrossRefGoogle Scholar
Smith, F.T. & Stewart, P.A. 1987 The resonant-triad nonlinear interaction in boundary-layer transition. J. Fluid Mech. 179, 227252.10.1017/S0022112087001502CrossRefGoogle Scholar
Suponitsky, V., Sandham, N.D. & Morfey, C.L. 2010 Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets. J. Fluid Mech. 658, 509538.10.1017/S0022112010002375CrossRefGoogle Scholar
Tam, C.K.W. & Burton, D.E. 1984 Sound generated by instability waves of supersonic flows. Part 1. Two-dimensional mixing layers. J. Fluid Mech. 138, 249271.10.1017/S0022112084000112CrossRefGoogle Scholar
Tam, C.K.W. & Morris, P.J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J. Fluid Mech. 98, 349381.10.1017/S0022112080000195CrossRefGoogle Scholar
Tissot, G., Lajús, F.C., Cavalieri, A.V.G. & Jordan, P. 2017 a Wave packets and Orr mechanism in turbulent jets. Phys. Rev. Fluids 2, 093901.10.1103/PhysRevFluids.2.093901CrossRefGoogle Scholar
Tissot, G., Zhang, M., Lajús, F.C., Cavalieri, A.V.G. & Jordan, P. 2017 b Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.10.1017/jfm.2016.735CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.10.1017/jfm.2018.283CrossRefGoogle Scholar
Van Atta, C.W. 1979 Inertial range bispectra in turbulence. Phys. Fluids 22, 14401442.10.1063/1.862764CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A: Fluid Dyn. 4, 350363.10.1063/1.858309CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.10.1063/1.869185CrossRefGoogle Scholar
Waleffe, F. & Kim, J. 1998 How streamwise rolls and streaks self-sustain in a shear flow. II. In 29th AIAA Fluid Dynamics Conference, p. 2997. American Institute of Aeronautics and Astronautics, Inc. (AIAA).Google Scholar
Wu, X. 1995 Viscous effects on fully coupled resonant-triad interactions: an analytical approach. J. Fluid Mech. 292, 377407.10.1017/S0022112095001571CrossRefGoogle Scholar
Wu, X. 2019 Nonlinear theories for shear flow instabilities: physical insights and practical implications. Ann. Rev. Fluid Mech. 51, 451485.10.1146/annurev-fluid-122316-045252CrossRefGoogle Scholar
Wu, X. & Huerre, P. 2009 Low-frequency sound radiated by a nonlinearly modulated wavepacket of helical modes on a subsonic circular jet. J. Fluid Mech. 637, 173211.10.1017/S0022112009990577CrossRefGoogle Scholar
Yeh, T.T. & Van Atta, C.W. 1973 Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech. 58, 233261.10.1017/S0022112073002570CrossRefGoogle Scholar
Yeung, B. & Schmidt, O.T. 2025 Spectral dynamics of natural and forced supersonic twin-rectangular jet flow. J. Fluid Mech. 1018, A34.10.1017/jfm.2025.10544CrossRefGoogle Scholar
Zhang, Z. & Wu, X. 2022 Nonlinear evolution and low-frequency acoustic radiation of ring-mode coherent structures on subsonic turbulent circular jets. J. Fluid Mech. 940, A39.10.1017/jfm.2022.252CrossRefGoogle Scholar
Zhang, Z. & Wu, X. 2023 Nonlinear dynamics and acoustic radiation of coherent structures consisting of multiple ring–helical modes in the near-nozzle region of a subsonic turbulent circular jet. J. Fluid Mech. 973, A8.10.1017/jfm.2023.597CrossRefGoogle Scholar