Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-10-07T14:09:24.085Z Has data issue: false hasContentIssue false

Beyond ideal gas: a comprehensive analysis of linear wave dynamics in arbitrary compressible fluids

Published online by Cambridge University Press:  07 October 2025

Gabriel Farag*
Affiliation:
Aix Marseille Université, Laboratoire IUSTI, CNRS UMR 7343, 5 Rue Enrico Fermi, 13453 Marseille, France
*
Corresponding author: Gabriel Farag, gabriel.farag@univ-amu.fr

Abstract

The propagation of linear waves in non-ideal compressible fluids plays a crucial role in numerous physical and engineering applications, particularly in the study of instabilities, aeroacoustics and turbulence modelling. This work investigates linear waves in viscous and heat-conducting non-ideal compressible fluids, modelled by the Navier–Stokes–Fourier equations and a fully arbitrary equation of state (EOS). The linearised governing equations are derived to analyse the dispersion relations when the EOS differs from that of an ideal gas. Special attention is given to the influence of non-ideal effects and various dimensionless numbers on wave propagation speed and attenuation. By extending classical results from Kovásznay (1953 J. Aeronaut. Sci. vol. 20, no. 10, pp. 657–674) and Chu (1965 Acta Mech. vol. 1, no. 3, pp. 215–234) obtained under the ideal gas assumption, this study highlights the modifications introduced by arbitrary EOSs to the linear wave dynamics in non-ideal compressible flows. This work paves the path for an improved understanding and modelling of wave propagation, turbulence and linear stability in arbitrary viscous and heat-conducting fluids.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alferez, N. & Touber, E. 2017 One-dimensional refraction properties of compression shocks in non-ideal gases. J. Fluid Mech. 814, 185221.CrossRefGoogle Scholar
Bell, I.H., Wronski, J., Quoilin, S. & Lemort, V. 2014 Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Indust. Engng Chem. Res. 53 (6), 24982508.CrossRefGoogle ScholarPubMed
Benjelloun, S. & Ghidaglia, J.-M. 2020 On the dispersion relation for compressible Navier–Stokes equations. arXiv:2011.06394Google Scholar
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V.B. 2017 Julia: a fresh approach to numerical computing. SIAM Rev. 59 (1), 6598.10.1137/141000671CrossRefGoogle Scholar
Bhatia, H., Norgard, G., Pascucci, V. & Bremer, P.-T. 2012 The Helmholtz-Hodge decomposition – a survey. IEEE Trans. Vis. Comput. Graph. 19 (8), 13861404.CrossRefGoogle Scholar
Borisov, A.A., Borisov, A.A., Kutateladze, S.S. & Nakoryakov, V.E. 1983 Rarefaction shock wave near the critical liquid–vapour point. J. Fluid Mech. 126, 5973.10.1017/S002211208300004XCrossRefGoogle Scholar
Brunner, G. 2010 Applications of supercritical fluids. Annu. Rev. Chem. Biomol. Engng 1 (1), 321342.CrossRefGoogle ScholarPubMed
Cercignani, C. 2000 Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press.Google Scholar
Chiapolino, A. & Saurel, R. 2025 Relaxation method for detonations in condensed explosives with pressure–temperature-equilibrium models and Mie–Grüneisen type equations of state. Phys. Fluids 37 (1), 016135.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1 (3), 215234.10.1007/BF01387235CrossRefGoogle Scholar
Chu, B.-T. & Kovásznay, L.S.G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3 (5), 494514.CrossRefGoogle Scholar
Cinnella, P. & Congedo, P.M. 2007 Inviscid and viscous aerodynamics of dense gases. J. Fluid Mech. 580, 179217.CrossRefGoogle Scholar
Cramer, M.S. 1989 Shock splitting in single-phase gases. J. Fluid Mech. 199, 281296.10.1017/S0022112089000388CrossRefGoogle Scholar
Cramer, M.S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24 (6), 066102.CrossRefGoogle Scholar
Cramer, M.S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.CrossRefGoogle Scholar
Cramer, M.S. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 393, 121.CrossRefGoogle Scholar
Cramer, M.S. & Sen, R. 1986 Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29 (7), 21812191.CrossRefGoogle Scholar
Danisch, S. & Krumbiegel, J. 2021 Makie.jl: flexible high-performance data visualization for Julia. J. Open Source Softw. 6 (65), 3349.CrossRefGoogle Scholar
De Hemptinne, J.C. & Béhar, E. 2006 Thermodynamic modelling of petroleum fluids. Oil Gas Sci. Technol. 61 (3), 303317.CrossRefGoogle Scholar
Fletcher, N.H. 1974 Adiabatic assumption for wave propagation. Am. J. Phys. 42 (6), 487489.CrossRefGoogle Scholar
Guardone, A., Colonna, P., Casati, E. & Rinaldi, E. 2014 Non-classical gas dynamics of vapour mixtures. J. Fluid Mech. 741, 681701.CrossRefGoogle Scholar
Guardone, A., Colonna, P., Pini, M. & Spinelli, A. 2024 Nonideal compressible fluid dynamics of dense vapors and supercritical fluids. Annu. Rev. Fluid Mech. 56 (1), 241269.CrossRefGoogle Scholar
Guardone, A. & Vimercati, D. 2016 Exact solutions to non-classical steady nozzle flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 800, 278306.CrossRefGoogle Scholar
Guardone, A., Zamfirescu, C. & Colonna, P. 2010 Maximum intensity of rarefaction shock waves for dense gases. J. Fluid Mech. 642, 127146.10.1017/S0022112009991716CrossRefGoogle Scholar
Huang, D.Z., Avery, P., Farhat, C., Rabinovitch, J., Derkevorkian, A. & Peterson, L.D. 2020 Modeling, simulation and validation of supersonic parachute inflation dynamics during mars landing. In AIAA Scitech 2020 Forum, pp. 0313.Google Scholar
Jofre, L. & Urzay, J. 2021 Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems. Prog. Energy Combust. Sci. 82, 100877.CrossRefGoogle Scholar
Kirchhoff, G. 1868 Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Ann. Phys. 210 (6), 177193.10.1002/andp.18682100602CrossRefGoogle Scholar
Kluwick, A. 2018 Shock discontinuities: from classical to non-classical shocks. Acta Mech. 229, 515533.CrossRefGoogle Scholar
Kluwick, A. & Cox, E.A. 2019 Weak shock reflection in channel flows for dense gases. J. Fluid Mech. 874, 131157.10.1017/jfm.2019.415CrossRefGoogle Scholar
Kovásznay, L.S.G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657674.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Elsevier.Google Scholar
Lee, J.H.S. & Ramamurthi, K. 2022 Fundamentals of Thermodynamics. CRC Press.Google Scholar
Liepmann, H.W. & Roshko, A. 2001 Elements of Gasdynamics. Dover Publications.Google Scholar
Lozano, E., Cawkwell, M.J. & Aslam, T.D. 2023 An analytic and complete equation of state for condensed phase materials. J. Appl. Phys. 134 (12), 125102.Google Scholar
Menikoff, R. & Plohr, B.J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1), 75.10.1103/RevModPhys.61.75CrossRefGoogle Scholar
Nannan, N.R., Sirianni, C., Mathijssen, T., Guardone, A. & Colonna, P. 2016 The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids. J. Fluid Mech. 795, 241261.CrossRefGoogle Scholar
NASA 2023 Mars fact sheet. https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html, accessed: 2025-07-04.Google Scholar
Van Nieuwenhuyse, J., Lecompte, S. & De Paepe, M. 2023 Current status of the thermohydraulic behavior of supercritical refrigerants: a review. Appl. Therm. Engng 218, 119201.10.1016/j.applthermaleng.2022.119201CrossRefGoogle Scholar
Poling, B.E., Prausnitz, J.M. & O’Connell, J.P. 2001 The Properties of Gases and Liquids, vol. 5. McGraw-Hill Google Scholar
Powers, J.M. 2004 Two-phase viscous modeling of compaction of granular materials. Phys. Fluids 16 (8), 29752990.CrossRefGoogle Scholar
Ren, J., Fu, S. & Pecnik, R. 2019 Linear instability of Poiseuille flows with highly non-ideal fluids. J. Fluid Mech. 859, 89125.10.1017/jfm.2018.815CrossRefGoogle Scholar
Romei, A., Vimercati, D., Persico, G. & Guardone, A. 2020 Non-ideal compressible flows in supersonic turbine cascades. J. Fluid Mech. 882, A12.CrossRefGoogle Scholar
Saurel, R., Métayer, O.Le, Massoni, J. & Gavrilyuk, S. 2007 Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16, 209232.Google Scholar
Sharma, B. 2022 On the nature of bulk viscosity of dilute gases. PhD thesis, Indian Institute of Technology, Kanpur.Google Scholar
Sharma, B., Pareek, S. & Kumar, R. 2023 Bulk viscosity of dilute monatomic gases revisited. Eur. J. Mech. B Fluids 98, 3239.10.1016/j.euromechflu.2022.10.009CrossRefGoogle Scholar
Sirianni, G., Guardone, A., Re, B. & Abgrall, R. 2024 An explicit primitive conservative solver for the Euler equations with arbitrary equation of state. Comput. Fluids 279, 106340.CrossRefGoogle Scholar
Skowron, J. & Gould, A. 2012 General complex polynomial root solver and its further optimization for binary microlenses. arXiv:1203.1034Google Scholar
Stokes, G.G. 2009 On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Cambridge University Press.10.1017/CBO9780511702242.005CrossRefGoogle Scholar
Thompson, P.A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.CrossRefGoogle Scholar
Thompson, P.A. & Lambrakis, K.C. 1973 Negative shock waves. J. Fluid Mech. 60 (1), 187208.CrossRefGoogle Scholar
Touber, E. & Alferez, N. 2019 Shock-induced energy conversion of entropy in non-ideal fluids. J. Fluid Mech. 864, 807847.CrossRefGoogle Scholar
Vienne, L., Giauque, A. & Lévêque, E. 2024 Hybrid lattice Boltzmann method for turbulent nonideal compressible fluid dynamics. Phys. Fluids 36 (11), 116138.CrossRefGoogle Scholar
Wolfram Research 2024 Mathematica. Version 14.2. Champaign, IL, 2024.Google Scholar
Yan, P., Gori, G., Zocca, M. & Guardone, A. 2025 SU2-COOL: Open-source framework for non-ideal compressible fluid dynamics. Comput. Phys. Commun. 307, 109394.CrossRefGoogle Scholar
Zamfirescu, C., Guardone, A. & Colonna, P. 2008 Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599, 363381.10.1017/S0022112008000207CrossRefGoogle Scholar