Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-02T22:37:54.976Z Has data issue: false hasContentIssue false

Anomalous scaling of the dispersion of microswimmer populations

Published online by Cambridge University Press:  29 September 2025

Laxminarsimha Rao Vennamneni
Affiliation:
Department of Mechanical Engineering, Gandhi Institute of Technology and Management, Hyderabad, India
Piyush Garg
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
Ganesh Subramanian*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
*
Corresponding author: Ganesh Subramanian, sganesh@jncasr.ac.in

Abstract

We examine the dispersion of prolate spheroidal microswimmers in pressure-driven channel flow, with the emphasis on a novel anomalous scaling regime. When time scales corresponding to swimmer orientation relaxation, and diffusion in the gradient and flow directions, are all well separated, a multiple scales analysis leads to a closed form expression for the shear-enhanced diffusivity, $D_{\it{eff}}$, governing the long-time spread of the swimmer population along the flow (longitudinal) direction. This allows one to organize the different $D_{\it{eff}}$-scaling regimes as a function of the rotary Péclet number (${\it{{\it{Pe}}}}_r)$, where the latter parameter measures the relative importance of shear-induced rotation and relaxation of the swimmer orientation due to rotary diffusion. For large ${\it{{\it{Pe}}}}_r$, $D_{\it{eff}}$ scales as $O({\it{{\it{Pe}}}}_r^4D_t)$ for $1 \leqslant \kappa \lesssim 2$, and as $O({\it{{\it{Pe}}}}_r^{ {10}/{3}}D_t)$ for $\kappa = \infty$, with $D_t$ being the intrinsic translational diffusivity of the swimmer arising from a combination of swimming and rotary diffusion, and $\kappa$ being the swimmer aspect ratio; $\kappa = 1$ for spherical swimmers. For $2 \lesssim \kappa \lt \infty$, the swimmers collapse onto the centreline with increasing ${\it{{\it{Pe}}}}_r$, leading to an anomalously reduced longitudinal diffusivity of $O({\it{{\it{Pe}}}}_r^{5-C(\kappa )}D_t)$. Here, $C(\kappa )\!\gt \!1$ characterizes the algebraic decay of swimmer concentration outside an $O({\it{{\it{Pe}}}}_r^{-1})$ central core, with the anomalous exponent $(5-C)$ governed by large velocity variations occasionally sampled by swimmers outside this core. Here, $C(\kappa )\gt 5$ for $\kappa \gtrsim 10$, leading to $D_{\it{eff}}$ eventually decreasing with increasing ${\it{{\it{Pe}}}}_r$, in turn implying a flow-independent maximum, at a finite ${\it{{\it{Pe}}}}_r$, for the rate of slender swimmer dispersion.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1965 Handbook Of Mathematical Functions: With Formulas, Graphs and Mathematical Tables, vol. 55. Courier Corporation.Google Scholar
Alert, R., Casademunt, J. & Joanny, J.F. 2022 Active turbulence. Annu. Rev. Condens. Matt. Phys. 13 (1), 143170.10.1146/annurev-conmatphys-082321-035957CrossRefGoogle Scholar
Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. 2006 Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355 (4), 619627.10.1016/j.jmb.2005.10.076CrossRefGoogle ScholarPubMed
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A: Math. Phys. Sci. 235(,1200), 6777.Google Scholar
Barry, M.T., Rusconi, R., Guasto, J.S. & Stocker, R. 2015 Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton. J. R. Soc. Interface 12 (112), 20150791.10.1098/rsif.2015.0791CrossRefGoogle ScholarPubMed
Bearon, R.N. & Hazel, A.L. 2015 The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771, R3.10.1017/jfm.2015.198CrossRefGoogle Scholar
Bees, M.A. & Croze, O.A. 2010 Dispersion of biased swimming micro-organisms in a fluid flowing through a tube. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 466 (2119), 20572077.Google Scholar
Berg, H.C. 1993 Random Walks in Biology. Princeton University Press.Google Scholar
Berman, S.A., Ferguson, K.S., Bizzak, N., Solomon, T.H. & Mitchell, K.A. 2022 Noise-induced aggregation of swimmers in the Kolmogorov flow. Frontiers Phys. 9, 816663.10.3389/fphy.2021.816663CrossRefGoogle Scholar
Borgnino, M., Boffetta, G., Cencini, M., De Lillo, F. & Gustavsson, K. 2022 Alignment of elongated swimmers in a laminar and turbulent Kolmogorov flow. Phys. Rev. Fluids 7 (7), 074603.10.1103/PhysRevFluids.7.074603CrossRefGoogle Scholar
Buchner, A.-J., Muller, K., Mehmood, J. & Tam, D. 2021 Hopping trajectories due to long-range interactions determine surface accumulation of microalgae. Proc. Natl Acad. Sci. USA 118 (20), e2102095118.10.1073/pnas.2102095118CrossRefGoogle ScholarPubMed
Chilukuri, S., Collins, C.H. & Underhill, P.T. 2015 Dispersion of flagellated swimming microorganisms in planar Poiseuille flow. Phys. Fluids 27 (3), 031902.10.1063/1.4914129CrossRefGoogle Scholar
Contino, M., Lushi, E., Tuval, I., Kantsler, V. & Polin, M. 2015 Microalgae scatter off solid surfaces by hydrodynamic and contact. Phys. Rev. Lett. 115, 258102.10.1103/PhysRevLett.115.258102CrossRefGoogle ScholarPubMed
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condes. Matter 24 (6), 065101.Google ScholarPubMed
Croze, O.A., Sardina, G., Ahmed, M., Bees, M.A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. Roy. Soc. Interface 10 (81), 20121041.10.1098/rsif.2012.1041CrossRefGoogle ScholarPubMed
Dehkharghani, A., Waisbord, N., Dunkel,  & Guasto, J.S. 2019 Bacterial scattering in microfluidic crystal flows reveals giant active Taylor–Aris dispersion. Proc. Natl Acad. Sci. USA 116 (23), 1111911124.10.1073/pnas.1819613116CrossRefGoogle ScholarPubMed
Dhont, J.K.G. 1996 An Introduction to Dynamics of Colloids. Elsevier.Google Scholar
Donlan, R.M. 2001 Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33 (8), 13871392.10.1086/322972CrossRefGoogle ScholarPubMed
Dorfman, K.D. & Brenner, H. 2001 Comment on “Taylor dispersion of a solute in a microfluidic channel. J. Appl. Phys. 89-90 (12), 65536554.10.1063/1.1417984CrossRefGoogle Scholar
Durham, W.M., Kessler, J.O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323 (5917), 10671070.10.1126/science.1167334CrossRefGoogle ScholarPubMed
Elgeti, J. & Gompper, G. 2009 Self-propelled rods near surfaces. Eur. Phys. Lett. 85 (3), 38002.10.1209/0295-5075/85/38002CrossRefGoogle Scholar
Elgeti, J. & Gompper, G. 2013 Wall accumulation of self-propelled spheres. Eur. Phys. Lett. 101 (4), 48003.10.1209/0295-5075/101/48003CrossRefGoogle Scholar
Ezhilan, B. & Saintillan, D. 2015 Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482522.10.1017/jfm.2015.372CrossRefGoogle Scholar
Felfoul, O., et al. 2016 Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11 (11), 941947.10.1038/nnano.2016.137CrossRefGoogle ScholarPubMed
Fernández, F.G.A., Camacho, F.G. & Chisti, Y. 1999 Photobioreactors: light regime, mass transfer, and scaleup. Prog. Indust. Microbiol. 35, pp. 231247.Google Scholar
Figueroa-Morales, N., Mino, G.L., Rivera, A., Caballero, R., Clément, E., Altshuler, E. & Lindner, A. 2015 Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matt. 11 (31), 62846293.10.1039/C5SM00939ACrossRefGoogle Scholar
Foister, R.T. & Van De Ven, T.G.M. 1980 Diffusion of brownian particles in shear flows. J. Fluid Mech. 96 (1), 105132.10.1017/S0022112080002042CrossRefGoogle Scholar
Ganesh, A., Douarche, C., Dentz, M. & Auradou, H. 2023 Numerical modeling of dispersion of swimming bacteria in a Poiseuille flow. Phys. Rev. Fluids 8 (3), 034501.10.1103/PhysRevFluids.8.034501CrossRefGoogle Scholar
Haynes, P.H. & Vanneste, J. 2014 Dispersion in the large-deviation regime. Part 1: shear flows and periodic flows. J. Fluid Mech. 745, 321350.10.1017/jfm.2014.64CrossRefGoogle Scholar
Hill, J., Kalkanci, O., McMurry, J.L. & Koser, H. 2007 Hydrodynamic Surface interactions enable Escherichia Coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98 (6), 068101.10.1103/PhysRevLett.98.068101CrossRefGoogle ScholarPubMed
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jiang, W. & Chen, G. 2019 Dispersion of active particles in confined unidirectional flows. J. Fluid Mech. 877, 134.10.1017/jfm.2019.562CrossRefGoogle Scholar
Jing, G., Zöttl, A., Clément, É. & Lindner, A. 2020 Chirality-induced bacterial rheotaxis in bulk shear flows. Sci. Adv. 6 (28), eabb2012.10.1126/sciadv.abb2012CrossRefGoogle ScholarPubMed
Kaya, T. & Koser, H. 2012 Direct upstream motility in escherichia coli . Biophys. J. 102 (7), 15141523.10.1016/j.bpj.2012.03.001CrossRefGoogle ScholarPubMed
Kessler, J.O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313 (5999), 218220.10.1038/313218a0CrossRefGoogle Scholar
Kevorkian, J.K. & Cole, J.D. 2012 Multiple Scale and Singular Perturbation Methods, vol. 114. Springer Science & Business Media.Google Scholar
Koch, D.L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Ann. Rev. Fluid Mech. 43 (1), 637659.10.1146/annurev-fluid-121108-145434CrossRefGoogle Scholar
Krishnamurthy, D. & Subramanian, G. 2015 Collective motion in a suspension of micro-swimmers that run-and-tumble and rotary diffuse. J. Fluid Mech. 781, 422466.10.1017/jfm.2015.473CrossRefGoogle Scholar
Kurz, D.L., Secchi, E., Stocker, R. & Jimenez-Martinez, J. 2023 Morphogenesis of biofilms in porous media and control on hydrodynamics. Environ. Sci. Technol. 57 (14), 56665677.10.1021/acs.est.2c08890CrossRefGoogle ScholarPubMed
Latini, M. & Bernoff, A.J. 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.10.1017/S0022112001004906CrossRefGoogle Scholar
Leal, L.G. & Hinch, E.J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46 (4), 685703.10.1017/S0022112071000788CrossRefGoogle Scholar
Maretvadakethope, S., Hazel, A.L., Vasiev, B. & Bearon, R.N. 2023 The interplay between bulk flow and boundary conditions on the distribution of microswimmers in channel flow. J. Fluid Mech. 976, A13.10.1017/jfm.2023.897CrossRefGoogle Scholar
Markale, I., Carrel, M., Kurz, D.L., Morales, V.L., Holzner, M. & Jiménez-Martínez, J. 2023 Internal biofilm heterogeneities enhance solute mixing and chemical reactions in porous media. Environ. Sci. Technol. 57 (21), 80658074.10.1021/acs.est.2c09082CrossRefGoogle ScholarPubMed
Martinez, V.A., et al. 2020 A combined rheometry and imaging study of viscosity reduction in bacterial suspensions. Proc. Natl Acad. Sci. USA 117 (5), 23262331.10.1073/pnas.1912690117CrossRefGoogle ScholarPubMed
Molaei, M., Barry, M., Stocker, R. & Sheng, J. 2014 Failed escape: solid surfaces prevent tumbling of Escherichia coli . Phys. Rev. Lett. 113, 068103.10.1103/PhysRevLett.113.068103CrossRefGoogle ScholarPubMed
Nitsche, L.C. & Hinch, E.J. 1997 Shear-induced lateral migration of brownian rigid rods in parabolic channel flow. J. Fluid Mech. 332, 121.10.1017/S0022112096003369CrossRefGoogle Scholar
Peng, Z. & Brady, J.F. 2020 Upstream swimming and Taylor dispersion of active Brownian particles. Phys. Rev. Fluids 5 (7), 073102.10.1103/PhysRevFluids.5.073102CrossRefGoogle Scholar
Reid, G. 1999 Biofilms in infectious disease and on medical devices. Intl J. Antimicrob. Agents 11 (3–4), 223226.10.1016/S0924-8579(99)00020-5CrossRefGoogle ScholarPubMed
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.10.1038/nphys2883CrossRefGoogle Scholar
Saintillan, D. & Shelley, M.J. 2007 Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99 (5), 058102.10.1103/PhysRevLett.99.058102CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M.J. 2015 Theory of Active Suspensions. Springer.10.1007/978-1-4939-2065-5_9CrossRefGoogle Scholar
Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J. & Smith, A.G. 2010 Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21 (3), 277286.10.1016/j.copbio.2010.03.005CrossRefGoogle ScholarPubMed
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.10.1146/annurev.fluid.29.1.435CrossRefGoogle Scholar
Stamm, W.E. 1991 Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am. J. Med. 91 (3), S65S71.10.1016/0002-9343(91)90345-XCrossRefGoogle Scholar
Strednak, S., Shaikh, S., Butler, J.E. & Guazzelli, É. 2018 Shear-induced migration and orientation of rigid fibers in an oscillatory pipe flow. Phys. Rev. Fluids 3 (9), 091301.10.1103/PhysRevFluids.3.091301CrossRefGoogle Scholar
Subramanian, G. & Brady, J.F. 2004 Multiple scales analysis of the fokker–planck equation for simple shear flow. Physica A 334 (3–4), 343384.10.1016/j.physa.2003.10.055CrossRefGoogle Scholar
Subramanian, G. & Koch, D.L. 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.10.1017/S002211200900706XCrossRefGoogle Scholar
Subramanian, G. & Nott, P.R. 2011 The fluid dynamics of swimming microorganisms and cells. J. Indian Inst. Sci. 91 (3), 383413.Google Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 1137, 186203.Google Scholar
Taylor, G.I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223, 1155, 446468.Google Scholar
Vennamneni, L., Garg, P. & Subramanian, G. 2020 a Concentration banding instability of a sheared bacterial suspension. J. Fluid Mech. 904, A7.10.1017/jfm.2020.664CrossRefGoogle Scholar
Vennamneni, L., Nambiar, S. & Subramanian, G. 2020 b Shear-induced migration of microswimmers in pressure-driven channel flow. J. Fluid Mech. 890, A15.10.1017/jfm.2020.118CrossRefGoogle Scholar
Vennamneni, L. & Subramanian, G. 2025 Shear-induced migration in active suspensions: the role of swimmer shape. Manuscript under preparation.Google Scholar
Wang, B., Jiang, W., Chen, G. & Tao, L. 2022 Transient dispersion in a channel with crossflow and wall adsorption. Phys. Rev. Fluids 7 (7), 074501.10.1103/PhysRevFluids.7.074501CrossRefGoogle Scholar
Wheeler, J.D., Secchi, E., Rusconi, R. & Stocker, R. 2019 Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu. Rev. Cell Dev. Biol. 35 (1), 213237.10.1146/annurev-cellbio-100818-125119CrossRefGoogle ScholarPubMed
Wooding, R.A. 1960 Instability of a viscous liquid of variable density in a vertical Hele–Shaw cell. J. Fluid Mech. 7 (4), 501515.10.1017/S0022112060000256CrossRefGoogle Scholar
Zeng, L., Jiang, W. & Pedley, T.J. 2022 Sharp turns and gyrotaxis modulate surface accumulation of microorganisms. Proc. Natl Acad. Sci. USA 119 (42), e2206738119.10.1073/pnas.2206738119CrossRefGoogle ScholarPubMed
Zöttl, A. & Stark, H. 2013 Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36, 110.10.1140/epje/i2013-13004-5CrossRefGoogle ScholarPubMed
Zöttl, A., Tesser, F., Matsunaga, D., Laurent, J., Du Roure, O. & Lindner, A. 2023 Asymmetric bistability of chiral particle orientation in viscous shear flows. Proc. Natl Acad. Sci. USA 120 (45), e2310939120.10.1073/pnas.2310939120CrossRefGoogle ScholarPubMed