Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-29T04:21:01.767Z Has data issue: false hasContentIssue false

Slow motion of a non-spherical solid body immersed in a fluid near a plane slip wall

Published online by Cambridge University Press:  28 October 2025

Néjiba Ghalya
Affiliation:
Laboratoire de Modélisation Mathématique et Numérique pour les Sciences de l’Ingénieur-LAMSIN, Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, BP 37, 1002 Tunis Le Belvédère, Tunis, Tunisia
A. Sellier*
Affiliation:
LadHyX, École Polytechnique , 91128 Palaiseau CEDEX, France
*
Corresponding author: A. Sellier, sellier@ladhyx.polytechnique.fr

Abstract

Wall slip sensitivity and non-sphericity and orientation effects are investigated for a moving no-slip solid body immersed in a fluid above a plane slip wall with a Navier slip. The wall–particle interactions are examined for the body motion in a quiescent fluid (resistance problem) or when freely suspended in a prescribed ‘linear’ or quadratic ambient shear flow. This is achieved, assuming Stokes flows, by using a boundary method which reduces the task to the treatment of six boundary-integral equations on the body surface. For a wall slip length $\lambda$ small compared with the wall–particle gap $d$ a ‘recipe’ connecting, at $O((\lambda /d)^2),$ the results for the slip wall and another no-slip wall with gap $d+\lambda$ is established. A numerical analysis is performed for a family of inclined non-spheroidal ellipsoids, having the volume of a sphere with radius $a,$ to quantity the particle behaviour sensitivity to the normalised wall slip length $\overline {\lambda }=\lambda /a,$ the normalised wall–particle gap ${\overline {d}}=d/a$ and the particle shape and orientation (here one angle $\beta ).$ The friction coefficients for the resistance problem exhibit quite different behaviours versus the particle shape and $({\overline {d}}, \overline {\lambda },\beta ).$ Some coefficients increase in magnitude with the wall slip. The migration of the freely suspended particle can also strongly depend on $({\overline {d}}, \overline {\lambda },\beta )$ and in a non-trivial way. For sufficiently small $\overline {d}$ a non-spherical particle can move faster than in the absence of a wall for a large enough wall slip for the ambient ‘linear’ shear flow and whatever the wall slip for the ambient quadratic shear flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1965 Handbook of Mathematical Functions. Dover Publications, Inc.Google Scholar
Basset, A.B. 1961 A Treatise on Hydrodynamics. Dover Publications, Inc.Google Scholar
Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.10.1017/S0022112070000745CrossRefGoogle Scholar
Batchelor, G.K. & Green, J.T. 1972 a The determination of the bulk stress in a suspension of spherical particles to order $c^2$ . J. Fluid Mech. 56, 401427.10.1017/S0022112072002435CrossRefGoogle Scholar
Batchelor, G.K. & Green, J.T. 1972 b The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.10.1017/S0022112072002927CrossRefGoogle Scholar
Baudry, J., Charlaix, E., Tonck, A. & Mazuyer, D. 2001 Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17, 52325236.10.1021/la0009994CrossRefGoogle Scholar
Beavers, G. & Joseph, D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.10.1017/S0022112067001375CrossRefGoogle Scholar
Blake, J.R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303310.CrossRefGoogle Scholar
Bonnet, M. 1995 Boundary Integral Equation Methods for Solids and Fluids. John Willey and Sons LTD.Google Scholar
Bowman, F. 1961 Introduction to Elliptic Functions with Applications. Dover Publications, Inc.Google Scholar
Brebbia, C.A., Telles, J.C.L. & Wrobel, L.C. 1984 Boundary Element Techniques. Theory and Applications in Engineering. Springer-Verlag.10.1007/978-3-642-48860-3CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng. Sci. 16, 242251.10.1016/0009-2509(61)80035-3CrossRefGoogle Scholar
Chaoui, M. & Feuillebois, F. 2003 Creeping flow around a sphere in a shear flow close to a wall. Quart. J. Mech. Appl. Math. 56 (3), 381410.10.1093/qjmam/56.3.381CrossRefGoogle Scholar
Churaev, N.V., Sobolev, V.D. & Somov, A.N. 1984 Slippage of liquids over lyophobic solid surfaces. J. Colloid Int. Sci 97, 574581.10.1016/0021-9797(84)90330-8CrossRefGoogle Scholar
Claeys, I.L. & Brady, J.F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. PCH. Phy. Chem. Hydrodyn. 11 (3), 261293.Google Scholar
Cottin-Bizonne, C., Jurine, S., Baudry, J., Crassous, J., Restagno, F. & Charlaix, E. 2002 An investigation of the boundary condition at hydrophobic and hydrophilic interfaces. Eur. Phys. J. E. 9, 4753.10.1140/epje/i2001-10112-9CrossRefGoogle ScholarPubMed
Cox, G.G. 1974 The motion of suspended particles almost in contact. Int. J. Multiphase Flow. 1, 343371.10.1016/0301-9322(74)90019-6CrossRefGoogle Scholar
Davis, A.M.J., Kezirian, M.T. & Brenner, H. 1994 On the Stokes–Einstein model of surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci. 1065, 129140.10.1006/jcis.1994.1213CrossRefGoogle Scholar
Dean, W.R. & O’Neill, M.E. 1963 A slow rotation of viscous liquid caused by the rotation of a solid sphere. Mathematika 10, 1324.10.1112/S0025579300003314CrossRefGoogle Scholar
Edwardes, B.A. 1892 Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Quart. J. Math 26, 7078.Google Scholar
Elasmi, L. 2008 Singularity method for stokes flow with slip boundary condition. J. Appl. Math. 735, 724739.Google Scholar
Faxen, H. 1922 Der widerstand gegen die bewegung einer starren kugel in einer zaehen fluessigkeit, die zwischen zwei parallelen ebenen waenden eingeschlossen ist. Annalen Des Physik 68, 98119.Google Scholar
Faxen, H. 1923 Die bewegung einer starren kugel langs der achse eines mit zaeher fluessigkeit geffuellten rohres. Arkiv Foer Mathematik, Astronomi Och Fysik 17, 128.Google Scholar
Feuillebois, F., Ghalya, N. & Sellier, A. 2012 Migration of a solid and arbitrarily-shaped particle near a plane slipping wall. J. Phys. Conf. Series 392, 012013.Google Scholar
Gavze, E. & Shapiro, M. 1997 Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. Int. J. Multiphase Flow. 23, 155182.10.1016/S0301-9322(96)00054-7CrossRefGoogle Scholar
Ghalia, N., Feuillebois, F. & Sellier, A. 2016 A sphere in a second degree polynomial creeping flow parallel to a plane, impermeable and slipping wall. Quart. J. Mech. Appl. Math. 69, 353390.10.1093/qjmam/hbw010CrossRefGoogle Scholar
Goldman, A.J. & Cox, R.G. 1967 a Slow viscous motion of a sphere parallel to a plane wall. Part I: motion through a quiescent fluid. Chem. Eng. Sci. 22, 637651.10.1016/0009-2509(67)80047-2CrossRefGoogle Scholar
Goldman, A.J. & Cox, R.G. 1967 b Slow viscous motion of a sphere parallel to a plane wall. Part II: Couette flow. Chem. Eng. Sci. 22, 653660.10.1016/0009-2509(67)80048-4CrossRefGoogle Scholar
Goren, S.L. 1973 The hydrodynamic force resisting the approach of a sphere to a plane wall in slip flow. J. Colloid Interface Sci. 44 (2), 356360.10.1016/0021-9797(73)90227-0CrossRefGoogle Scholar
Gradshteyn, I.S. & Ryzhik, I.M. 1965 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Leyden.Google Scholar
Hocking, L.M. 1973 The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Engine. Math. 7 (3), 207221.10.1007/BF01535282CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1989 The motion of a rigid body in viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.10.1017/S0022112089002491CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1994 Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low reynolds number. J. Fluid Mech.. 268, 267292.10.1017/S0022112094001345CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. London A. 102, 161179.Google Scholar
Joseph, P. & Tabeling, P. 2005 Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303-1–035303-410.1103/PhysRevE.71.035303CrossRefGoogle ScholarPubMed
Khabthani, S., Sellier, A., Elasmi, L. & Feuillebois, F. 2012 Motion of a solid particle in a shear flow along a porous slab. J. Fluid Mech. 713, 271306.10.1017/jfm.2012.457CrossRefGoogle Scholar
Khabthani, S., Sellier, A. & Feuillebois, F. 2013 Motion of a distant solid particle in a shear flow along a porous slab. ZAMP 64, 17591777.Google Scholar
Kim, S. & Karrila, S.J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Ladyzhenskaya, O.A. 1963 The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach.Google Scholar
Lamb, H.L. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lauga, E., Brenner, M.P. & Stone, H.A. 2007 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics, pp. 12191240.Google Scholar
Lauga, E. & Squires, T.M. 2005 Brownian motion near a partial-slip boundary: a local probe of the no-slip condition. Phys. Fluids 17.10.1063/1.2083748CrossRefGoogle Scholar
Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P. & Feuillebois, F. 2004 Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513, 247264.10.1017/S0022112004009942CrossRefGoogle Scholar
Lorentz, A. 1907 Abhandlungen ueber theoretische Physik. vol. Erster Band. B. G. Teubner, pp. 2342.Google Scholar
Loussaief, H., Pasol, L. & Feuillebois, F. 2015 Motion of a spherical particle in a viscous fluid along a slip wall. Quart. J. Mech. Appl. Math. 68 (2), 115144.10.1093/qjmam/hbv001CrossRefGoogle Scholar
Luo, H. & Pozrikidis, C. 2008 Effect of surface slip on stokes flow past a spherical particle in infinite fluid and near a plane wall. J. Engng. Math. 62, 121.10.1007/s10665-007-9170-6CrossRefGoogle Scholar
Maud, A.D. 1963 The movement of a sphere in front of a plane at low Reynolds number. Brit. J. Appl. Phys. 14, 894898.10.1088/0508-3443/14/12/316CrossRefGoogle Scholar
Maxwell, J. 1879 On stresses in rarefied gases arising from inequalities of temperature, Philos. Trans. R. Soc. London 170, 231256.Google Scholar
Mitchell, W.H. & Spagnolie, S.E. 2015 Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding. J. Fluid Mech. 772, 600629.10.1017/jfm.2015.222CrossRefGoogle Scholar
Mody, N.A. & King, M.R. 2005 Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys. Fluids 17, 113302.10.1063/1.2126937CrossRefGoogle Scholar
Navier, C.L.M.H. 1823 Mémoire sur les lois du mouvement des fluides. Mémoires de l’Acad. des Sciences de l’Institut de France 6, 389416.Google Scholar
Oberbeck, A. 1876 Uber stationare flussigkeitsbewegungen mit berucksichtigung der. J. Reine. Angew. Math. 81, 6280.Google Scholar
O’Neill, M.E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11, 6774.10.1112/S0025579300003508CrossRefGoogle Scholar
O’Neill, M.E. & Bhatt, B.S. 1991 Slow motion of a solid sphere in the presence of a naturally permeable surface. Quart. J. Mech. Appl. Math. 44, 91104.CrossRefGoogle Scholar
O’Neill, M.E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby wall. J. Fluid Mech.. 27, 705724.10.1017/S0022112067002551CrossRefGoogle Scholar
Pasol, L., Sellier, A. & Feuillebois, F. 2006 A sphere in a second degree polynomial creeping flow parallel to a wall. Q. J. Mech. Appl. Math. 59, 587614.10.1093/qjmam/hbl018CrossRefGoogle Scholar
Pasol, L., Sellier, A. & Feuillebois, F. 2009 Creeping flow around a solid sphere in the vicinity of a plane solid wall. In Theoretical Methods for Micro Scale Viscous Flows, (ed. F. Feuillebois & A. Sellier) 105126. Transworld Research Network.Google Scholar
Power, H. & Miranda, G. 1987 Second kind integral equation formulation of Stokes flow past a particle of arbitrary shape. SIAM J. Appl. Math. 47 (4), 689698.10.1137/0147047CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge.10.1017/CBO9780511624124CrossRefGoogle Scholar
Pozrikidis, C. 2005 Orbiting motion of a freely suspended spheroid near a plane wall. J. Fluid Mech. 541, 105114.10.1017/S0022112005006117CrossRefGoogle Scholar
Reed, L.D. & Morrison, F.A. Jr 1974 Particle interactions in viscous flow at small values of Knudsen number. J. Aerosol Sci. 5 (2), 175189.10.1016/0021-8502(74)90048-2CrossRefGoogle Scholar
Rothstein, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.10.1146/annurev-fluid-121108-145558CrossRefGoogle Scholar
Russel, W.B., Hinch, E.J., Leal, L.G. & Tieffenbruck, G. 1977 Rods falling near a vertical wall. J. Fluid Mech. 83, 273287.CrossRefGoogle Scholar
Sellier, A. 2005 Settling motion of interacting solid particles in the vicinity of a plane solid boundary. Comptes Rendus. Mécanique 333, 413418.10.1016/j.crme.2005.02.008CrossRefGoogle Scholar
Sellier, A. 2010 Boundary element technique for slow viscous flows about particles. In Boundary Element Method in Engineering and Sciences Computational and Experimental Methods in Structures, (ed M.H. Aliabadi & P.H. Wen) vol. 4, World Scientific.Google Scholar
Sellier, A. & Ghalya, N. 2011 Green tensor for a general anisotropic slip condition. CMES 78, 2548.Google Scholar
Staben, M., Zinchenko, A. & Davis, R.H. 2006 Dynamic simulation of spheroid motion between two parallel plane walls in low-Reynolds-number Poiseuille flow. J. Fluid Mech. 553, 187226.10.1017/S0022112006008731CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Adjari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Tözeren, H. & Skalak, R. 1983 Stress in a suspension near rigid boundaries. J. Fluid Mech. 82, 289307.10.1017/S0022112077000676CrossRefGoogle Scholar
Vinogradova, O.I. 1996 Hydrodynamic interaction of curved bodies allowing slip on their surfaces. Langmuir 12, 59635968.10.1021/la960531uCrossRefGoogle Scholar
Vinogradova, O.I. 1999 Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 3160.10.1016/S0301-7516(98)00041-6CrossRefGoogle Scholar
Vinogradova, O.I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmir 11, 22132220.10.1021/la00006a059CrossRefGoogle Scholar
Vinogradova, O.I. & Dubov, A.L. 2012 Superhydrophobic textures for microfluidics. Mendeleev Commun. 19, 229237.10.1016/j.mencom.2012.09.001CrossRefGoogle Scholar
Vinogradova, O.I. & Yakubov, G.E. 2003 Dynamic effects on force measurements, 2. Lubrication and the atomic force microscope. Langmuir 19, 12271234.10.1021/la026419fCrossRefGoogle Scholar
Youngren, G.K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69, 377403.CrossRefGoogle Scholar
Supplementary material: File

Ghalya and Sellier supplementary material

Ghalya and Sellier supplementary material
Download Ghalya and Sellier supplementary material(File)
File 365.2 KB