Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-30T06:35:50.089Z Has data issue: false hasContentIssue false

Experimental study of particle clusters in wall turbulence

Published online by Cambridge University Press:  15 August 2025

Wangbin Chen
Affiliation:
Center for Particle-Laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Guohua Wang*
Affiliation:
Center for Particle-Laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi’an 710071, PR China
*
Corresponding author: Guohua Wang, ghwang@lzu.edu.cn

Abstract

In this study, the statistical properties and formation mechanisms of particle clusters that consider the influence of particle–wall interactions in particle-laden wall turbulence are systematically investigated through wind tunnel experiments. In the experiments, two particle release modes, including particle top-releasing mode (Case 1) and particle locally laying mode (Case 2), were adopted to establish varying conditions with different particle–wall interaction strengths. The Voronoï diagram method was employed to identify the particle clusters, and the impact of particle–wall interactions on the characteristics of the clusters was analysed. The results indicate that particle–wall interaction is the predominant factor in the formation of particle clusters in the near-wall region. Under Case 1 and Case 2, the maximum concentration of particles in the clusters could reach nearly five times the average particle concentration; however, the clusters with large particle numbers ($N_C\gt 5$) in Case 1 tended to form near the wall and the vertical velocities of these clusters were greater than the average velocities of all particles. In contrast, under Case 2, clusters with large particle numbers exhibited a higher probability of occurrence further from the wall and the vertical velocities of these clusters were lower than the average velocity of all particles. Furthermore, this study found that the presence of particle clusters in these flows significantly alters the flow field properties surrounding them, implying that a region of high strain and low vorticity constitutes an essential but non-sufficient condition for the generation of particle clusters in wall turbulence.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J.C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.10.1017/S0022112002001593CrossRefGoogle Scholar
Baker, L., Frankel, A., Mani, A. & Coletti, F. 2017 Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833, 364398.10.1017/jfm.2017.700CrossRefGoogle Scholar
Baker, L.J. & Coletti, F. 2021 Particle–fluid–wall interaction of inertial spherical particles in a turbulent boundary layer. J. Fluid Mech. 908, A39.10.1017/jfm.2020.934CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550 (1), 349358.10.1017/S002211200500844XCrossRefGoogle Scholar
Berk, T. & Coletti, F. 2006 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.10.1017/jfm.2020.597CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2023 Dynamics and scaling of particle streaks in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 975, A47.10.1017/jfm.2023.885CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.10.1017/jfm.2014.561CrossRefGoogle Scholar
Bragg, A.D., Ireland, P.J. & Collins, L.R. 2015 Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E 92 (2), 023029.CrossRefGoogle ScholarPubMed
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Chen, L., Goto, S. & Vassilicos, J.C. 2006 Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553 (1), 143154.10.1017/S0022112006009177CrossRefGoogle Scholar
Chun, J., Koch, D.L., Rani, S.L., Ahluwalia, A. & Collins, L.R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.10.1017/S0022112005004568CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2021 Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 922, A9.10.1017/jfm.2021.507CrossRefGoogle Scholar
Cui, G., Ruhman, I. & Jacobi, I. 2022 Spatial detection and hierarchy analysis of large-scale particle clusters in wall-bounded turbulence. J. Fluid Mech. 942, A52.10.1017/jfm.2022.429CrossRefGoogle Scholar
Dejoan, A. & Monchaux, R. 2013 Preferential concentration and settling of heavy particles in homogeneous turbulence. Phys. Fluids 25 (1), 013301.10.1063/1.4774339CrossRefGoogle Scholar
Ernst, M., Sommerfeld, M. & Laín, S. 2019 Quantification of preferential concentration of colliding particles in a homogeneous isotropic turbulent flow. Intl J. Multiphase Flow 117, 163181.10.1016/j.ijmultiphaseflow.2019.05.007CrossRefGoogle Scholar
Ferenc, J.-S. & Néda, Z. 2007 On the size distribution of Poisson Voronoï cells. Physica A: Stat. Mech. Applics 385 (2), 518526.CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.10.1063/1.868445CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.10.1017/jfm.2019.355CrossRefGoogle Scholar
García-Villalba, M., Kidanemariam, A.G. & Uhlmann, M. 2012 DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow 46, 5474.10.1016/j.ijmultiphaseflow.2012.05.007CrossRefGoogle Scholar
Gerashchenko, S., Sharp, N.S., Neuscamman, S. & Warhaft, Z. 2008 Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255281.10.1017/S0022112008004187CrossRefGoogle Scholar
Gibert, M., Xu, H. & Bodenschatz, E. 2012 Where do small, weakly inertial particles go in a turbulent flow? J. Fluid Mech. 698, 160167.10.1017/jfm.2012.72CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18 (11), 115103.10.1063/1.2364263CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 054503.10.1103/PhysRevLett.100.054503CrossRefGoogle ScholarPubMed
Ireland, P.J., Bragg, A.D. & Collins, L.R. 2016 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part I: simulations without gravitational effects. J. Fluid Mech. 796, 617658.10.1017/jfm.2016.238CrossRefGoogle Scholar
Kiger, K.T. & Pan, C. 2002 Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow. J. Turbul. 3 (1), 019.10.1088/1468-5248/3/1/019CrossRefGoogle Scholar
Kumaran, V. 2003 Stability of a sheared particle suspension. Phys. Fluids 15 (12), 36253637.10.1063/1.1616016CrossRefGoogle Scholar
Liu, H., Feng, Y. & Zheng, X. 2022 Experimental investigation of the effects of particle near-wall motions on turbulence statistics in particle-laden flows. J. Fluid Mech. 943, A8.10.1017/jfm.2022.407CrossRefGoogle Scholar
Liu, Y., Shen, L., Zamansky, R. & Coletti, F. 2020 Life and death of inertial particle clusters in turbulence. J. Fluid Mech. 902, R1.10.1017/jfm.2020.710CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.10.1017/S0022112004009802CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: A Voronoï analysis. Phys. Fluids 22 (10), 103304.10.1063/1.3489987CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.10.1016/j.ijmultiphaseflow.2011.12.001CrossRefGoogle Scholar
Ninto, Y. & Garcia, M.H. 1996 Experiments on particle – turbulence interactions in the near–wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.CrossRefGoogle Scholar
Peng, C., Wang, L.-P. & Chen, S. 2024 Preferential accumulation of finite-size particles in near-wall streaks. J. Fluid Mech. 980, A38.10.1017/jfm.2024.41CrossRefGoogle Scholar
Petersen, A.J., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864, 925970.10.1017/jfm.2019.31CrossRefGoogle Scholar
Righetti, M. & Romano, G.P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.10.1017/S0022112004008304CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L. & Picano, F. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.10.1017/jfm.2012.65CrossRefGoogle Scholar
Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y. & Gylfason, Á. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett 100 (21), 214501.10.1103/PhysRevLett.100.214501CrossRefGoogle ScholarPubMed
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.10.1016/j.ijmultiphaseflow.2009.02.016CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids 2 (7), 11911203.10.1063/1.857620CrossRefGoogle Scholar
De Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.10.1103/PhysRevLett.111.044501CrossRefGoogle ScholarPubMed
Sumbekova, S., Cartellier, A., Aliseda, A. & Bourgoin, M. 2017, Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2 (2), 024302.10.1103/PhysRevFluids.2.024302CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension, part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.10.1017/S0022112096004454CrossRefGoogle Scholar
Tagawa, Y., Mercado, J.M., Prakash, V.N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.10.1017/jfm.2011.510CrossRefGoogle Scholar
Tanière, A., Oesterlé, B. & Monnier, J.C. 1997 On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects. Exp. Fluids. 23 (6), 463471.Google Scholar
Wang, G.H., Chen, W.B. & Zheng, X.J. 2024 Experimental study of the effect of particle–wall interactions on inertial particle dynamics in wall turbulence. J. Fluid Mech. 984, A4.10.1017/jfm.2024.123CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.10.1017/S0022112093002708CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117153.10.1017/S0022112000008661CrossRefGoogle Scholar
Wood, A.M., Hwang, W. & Eaton, J.K. 2005 Preferential concentration of particles in homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31 (10–11), 12201230.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.10.1017/jfm.2012.492CrossRefGoogle Scholar
Zheng, X., Wang, G. & Zhu, W. 2021 Experimental study on the effects of particle–wall interactions on VLSM in sand-laden flows. J. Fluid Mech. 914, A35.10.1017/jfm.2021.16CrossRefGoogle Scholar
Zhu, H., Pan, C., Wang, G., Liang, Y., Ji, X. & Wang, J. 2021 Attached eddy-like particle clustering in a turbulent boundary layer under net sedimentation conditions. J. Fluid Mech. 920, A53.10.1017/jfm.2021.389CrossRefGoogle Scholar