Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-08-29T11:59:14.696Z Has data issue: false hasContentIssue false

Experimental investigation of fractal features of passive scalar mixing in turbulent pipe flow

Published online by Cambridge University Press:  19 August 2025

Huixin Li
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Beijing 101408, PR China
Duo Xu*
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Beijing 101408, PR China
Guowei He
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Beijing 101408, PR China
*
Corresponding author: Duo Xu, duo.xu@imech.ac.cn

Abstract

In this study, we present a fractal dimension analysis of high Schmidt number passive scalar mixing in experiments of turbulent pipe flow. By using the high-resolution planar laser-induced fluorescence technique, the scalar concentration fields are measured at Reynolds numbers $10\,000$, $15\,000$ and $20\,000$. In the inertial–convective range, the iso-scalar surface exhibits self-similar fractal characteristics, giving fractal dimension $1.67 \pm 0.05$ from the two-dimensional measurements over a range of length scales. This fractal dimension is approximately independent of the criteria of extracting the iso-scalar surfaces, the corresponding thresholds and the Reynolds numbers examined in this study. The crossover length scale, beyond which the $1.67 \pm 0.05$ fractal dimension is exhibited, is about ten times the Kolmogorov length scale, in agreement with previous studies. As the length scales decrease to be smaller than this crossover length scale, the fractal dimension, calculated from the one-dimensional signals, increases and approaches a saturation at approximately 2 (with the additive law) in the viscous–convective range, manifesting the space-filling characteristics, as theoretically predicted by Grossmann & Lohse (1994, Europhys. Lett., vol. 27, 347). This observation presents first-time experimental evidence for the fractal characteristics predicted by Grossmann and Lohse for the high Schmidt number passive scalar mixing.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.10.1017/S0022112084000513CrossRefGoogle Scholar
Antonia, R.A., Satyaprakash, B.R. & Hussain, A.K.M.F. 1980 Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23 (4), 695700.10.1063/1.863055CrossRefGoogle Scholar
van Atta, C.W. & Chen, W.Y. 1970 Structure functions of turbulence in the atmospheric boundary layer over the ocean. J. Fluid Mech. 44 (1), 145159.10.1017/S002211207000174XCrossRefGoogle Scholar
Bailey, S.C.C., Hultmark, M., Schumacher, J., Yakhot, V. & Smits, A.J. 2009 Measurement of local dissipation scales in turbulent pipe flow. Phys. Rev. Lett. 103, 014502.10.1103/PhysRevLett.103.014502CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5 (1), 113133.10.1017/S002211205900009XCrossRefGoogle Scholar
Brethouwer, G., Boersma, B.J., Pourquié, M.B.J.M. & Nieuwstadt, F.T.M. 1999 Direct numerical simulation of turbulent mixing of a passive scalar in pipe flow. Eur. J. Mech. B/Fluids 18 (4), 739756.10.1016/S0997-7546(99)00102-8CrossRefGoogle Scholar
Catrakis, H.J., Aguirre, R.C., Ruiz-Plancarte, J., Thayne, R.D., McDonald, B.A. & Hearn, J.W. 2002 Large-scale dynamics in turbulent mixing and the three-dimensional space–time behaviour of outer fluid interfaces. J. Fluid Mech. 471, 381408.10.1017/S0022112002002240CrossRefGoogle Scholar
Catrakis, H.J. & Dimotakis, P.E. 1996 Mixing in turbulent jets: scalar measures and isosurface geometry. J. Fluid Mech. 317, 369406.10.1017/S002211209600078XCrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53, 113145.10.1146/annurev-fluid-042320-100458CrossRefGoogle Scholar
Cerbus, R.T., Liu, C., Gioia, G. & Chakraborty, P. 2020 Small-scale universality in the spectral structure of transitional pipe flows. Sci. Adv. 6 (4), eaaw6256.10.1126/sciadv.aaw6256CrossRefGoogle ScholarPubMed
Cetegen, B.M. & Mohamad, N. 1993 Experiments on liquid mixing and reaction in a vortex. J. Fluid Mech. 249, 391414.10.1017/S0022112093001223CrossRefGoogle Scholar
Chen, J. & Buxton, O.R.H. 2023 Spatial evolution of the turbulent/turbulent interface geometry in a cylinder wake. J. Fluid Mech. 969, A4.10.1017/jfm.2023.547CrossRefGoogle Scholar
Constantin, P., Procaccia, I. & Sreenivasan, K.R. 1991 Fractal geometry of isoscalar surfaces in turbulence: theory and experiments. Phys. Rev. Lett. 67 (13), 17391742.10.1103/PhysRevLett.67.1739CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. 1244.Google Scholar
Crimaldi, J.P. 2008 Planar laser induced fluorescence in aqueous flows. Exp. Fluids 44, 851863.10.1007/s00348-008-0496-2CrossRefGoogle Scholar
Dasi, L.P., Schuerg, F. & Webster, D.R. 2007 The geometric properties of high-Schmidt-number passive scalar iso-surfaces in turbulent boundary layers. J. Fluid Mech. 588, 253277.10.1017/S0022112007007525CrossRefGoogle Scholar
Debue, P., Kuzzay, D., Saw, E., Daviaud, F., Dubrulle, B., Canet, L., Rossetto, V. & Wschebor, N. 2018 Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys. Rev. Fluids 3, 024602.10.1103/PhysRevFluids.3.024602CrossRefGoogle Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37 (1), 329356.10.1146/annurev.fluid.36.050802.122015CrossRefGoogle Scholar
Dimotakis, P.E., Miake-Lye, R.C. & Papantoniou, D.A. 1983 Structure and dynamics of round turbulent jets. Phys. Fluids 26 (11), 31853192.10.1063/1.864090CrossRefGoogle Scholar
van Doorne, C.W.H. & Westerweel, J. 2007 Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp. Fluids 42, 259279.10.1007/s00348-006-0235-5CrossRefGoogle Scholar
Doron, P., Bertuccioli, L., Katz, J. & Osborn, T.R. 2001 Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr. 31 (8), 21082134.10.1175/1520-0485(2001)031<2108:TCADEI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Eckhardt, B. & Schumacher, J. 1999 Structure function of passive scalars in two-dimensional turbulence. Phys. Rev. E 60, 41854192.10.1103/PhysRevE.60.4185CrossRefGoogle ScholarPubMed
Effinger, H. & Grossmann, S. 1987 Static structure function of turbulent flow from the Navier–Stokes equations. Z. Phys. B Condens. Matt. 66, 289304.10.1007/BF01305419CrossRefGoogle Scholar
Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. & Nieuwstadt, F.T.M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175210.10.1017/S002211209400131XCrossRefGoogle Scholar
El Khoury, G.K., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G. & Johansson, A.V. 2013 Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91, 475495.10.1007/s10494-013-9482-8CrossRefGoogle Scholar
Er, S., Laval, J.-P. & Vassilicos, J.C. 2023 Length scales and the turbulent/non-turbulent interface of a temporally developing turbulent jet. J. Fluid Mech. 970, A33.10.1017/jfm.2023.654CrossRefGoogle Scholar
Federer, H. 1969 Geometric Measure Theory. Springer.Google Scholar
Frederiksen, R.D., Dahm, W.J.A. & Dowling, D.R. 1996 Experimental assessment of fractal scale-similarity in turbulent flows. Part 1. One-dimensional intersections. J. Fluid Mech. 327, 3572.10.1017/S0022112096008452CrossRefGoogle Scholar
Gauding, M., Thiesset, F., Varea, E. & Danaila, L. 2022 Structure of iso-scalar sets. J. Fluid Mech. 942, A14.10.1017/jfm.2022.367CrossRefGoogle Scholar
Germaine, E., Mydlarski, L. & Cortelezzi, L. 2014 Evolution of the scalar dissipation rate downstream of a concentrated line source in turbulent channel flow. J. Fluid Mech. 749, 227274.10.1017/jfm.2014.170CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 1993 Characteristic scales in Rayleigh–Bénard turbulence. Phys. Lett. A 173 (1), 5862.10.1016/0375-9601(93)90087-GCrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 1994 Fractal-dimension crossovers in turbulent passive scalar signals. Europhys. Lett. 27 (5), 347.10.1209/0295-5075/27/5/003CrossRefGoogle Scholar
Iyer, K.P., Schumacher, J., Sreenivasan, K.R. & Yeung, P.K. 2020 Fractal iso-level sets in high-Reynolds-number scalar turbulence. Phys. Rev. Fluids 5 (4), 044501.10.1103/PhysRevFluids.5.044501CrossRefGoogle Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.10.1017/jfm.2020.755CrossRefGoogle Scholar
Kohan, K.F. & Gaskin, S.J. 2022 On the scalar turbulent/turbulent interface of axisymmetric jets. J. Fluid Mech. 950, A32.10.1017/jfm.2022.825CrossRefGoogle Scholar
Kraichnan, R.H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.10.1063/1.1692063CrossRefGoogle Scholar
Lane-Serff, G.F. 1993 Investigation of the fractal structure of jets and plumes. J. Fluid Mech. 249, 521534.10.1017/S0022112093001272CrossRefGoogle Scholar
Lavertu, R.A. & Mydlarski, L. 2005 Scalar mixing from a concentrated source in turbulent channel flow. J. Fluid Mech. 528, 135172.10.1017/S0022112004003210CrossRefGoogle Scholar
Lepore, J. & Mydlarski, L. 2011 Lateral dispersion from a concentrated line source in turbulent channel flow. J. Fluid Mech. 678, 417450.10.1017/jfm.2011.119CrossRefGoogle Scholar
Mandelbrot, B.B. 1975 On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72 (3), 401416.10.1017/S0022112075003047CrossRefGoogle Scholar
Mandelbrot, B.B. 1982 The Fractal Geometry of Nature. W.H. Freeman and Co.Google Scholar
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.10.1017/S0022112082003450CrossRefGoogle Scholar
Miller, P.L. & Dimotakis, P.E. 1991 Stochastic geometric properties of scalar interfaces in turbulent jets. Phys. Fluids A: Fluid Dyn. 3 (1), 168177.10.1063/1.857876CrossRefGoogle Scholar
Mistry, D., Dawson, J.R. & Kerstein, A.R. 2018 The multi-scale geometry of the near field in an axisymmetric jet. J. Fluid Mech. 838, 501515.10.1017/jfm.2017.899CrossRefGoogle Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.10.1017/jfm.2016.474CrossRefGoogle Scholar
Mohaghar, M., Dasi, L.P. & Webster, D.R. 2020 Scalar power spectra and turbulent scalar length scales of high-Schmidt-number passive scalar fields in turbulent boundary layers. Phys. Rev. Fluids 5 (8), 084606.10.1103/PhysRevFluids.5.084606CrossRefGoogle Scholar
Peltier, W.R. & Caulfield, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.10.1146/annurev.fluid.35.101101.161144CrossRefGoogle Scholar
Pope, S.B. 1991 Computations of turbulent combustion: progress and challenges. Twenty-Third Symp. (Intl) Combust. 23 (1), 591612.10.1016/S0082-0784(06)80307-3CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Prasad, R.R. & Sreenivasan, K.R. 1990 The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids A: Fluid Dyn. 2 (5), 792807.10.1063/1.857733CrossRefGoogle Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018, Particle image velocimetry: a practical guide, 3rd edn, Springer.10.1007/978-3-319-68852-7CrossRefGoogle Scholar
Ready, J.F. 1997 Industrial Applications of Lasers. 2nd edn. Academic Press.Google Scholar
Shraiman, B.I & Siggia, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639646.10.1038/35015000CrossRefGoogle ScholarPubMed
de Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent–nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.10.1103/PhysRevLett.111.044501CrossRefGoogle ScholarPubMed
Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.10.1146/annurev.fl.23.010191.002543CrossRefGoogle Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. 116 (37), 1817518183.10.1073/pnas.1800463115CrossRefGoogle ScholarPubMed
Vanderwel, C. & Tavoularis, S. 2014 Measurements of turbulent diffusion in uniformly sheared flow. J. Fluid Mech. 754, 488514.10.1017/jfm.2014.406CrossRefGoogle Scholar
Villermaux, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51, 245273.10.1146/annurev-fluid-010518-040306CrossRefGoogle Scholar
Villermaux, E. & Innocenti, C. 1999 On the geometry of turbulent mixing. J. Fluid Mech. 393, 123147.10.1017/S0022112099005674CrossRefGoogle Scholar
Villermaux, E., Innocenti, C. & Duplat, J. 2001 Short circuits in the Corrsin–Obukhov cascade. Phys. Fluids 13 (1), 284289.10.1063/1.1324006CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.10.1146/annurev.fluid.32.1.203CrossRefGoogle Scholar
White, F.M. 2016 Fluid Mechanics, McGraw-Hill Series in Mechanical Engineering, 8th edn. McGraw-Hill.Google Scholar
Xu, D. & Chen, J. 2012 Experimental study of stratified jet by simultaneous measurements of velocity and density fields. Exp. Fluids 53, 145162.10.1007/s00348-012-1275-7CrossRefGoogle Scholar
Xu, D. & Chen, J. 2013 Accurate estimate of turbulent dissipation rate using PIV data. Expl Therm. Fluid Sci. 44, 662672.10.1016/j.expthermflusci.2012.09.006CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2023 Reynolds number dependence of the turbulent/non-turbulent interface in temporally developing turbulent boundary layers. J. Fluid Mech. 964, A8.10.1017/jfm.2023.329CrossRefGoogle Scholar
Zhang, Y., Bodenschatz, E., Xu, H. & Xi, H. 2021 Experimental observation of the elastic range scaling in turbulent flow with polymer additives. Sci. Adv. 7 (14), eabd3525.10.1126/sciadv.abd3525CrossRefGoogle ScholarPubMed
Zhuang, Y., Tan, H., Huang, H., Liu, Y. & Zhang, Y. 2018 Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers. J. Fluid Mech. 843, R2.10.1017/jfm.2018.220CrossRefGoogle Scholar
Zubair, F.R. & Catrakis, H.J. 2009 On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers. J. Fluid Mech. 624, 389411.10.1017/S0022112008005612CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary movie

(a) Time sequence of the scalar concentration field. (b) The iso-scalar surfaces extracted using several thresholds, each of which is indicated by a color.
Download Li et al. supplementary movie(File)
File 28.1 MB