Hostname: page-component-7f64f4797f-d87pz Total loading time: 0 Render date: 2025-11-04T21:53:26.601Z Has data issue: false hasContentIssue false

Poisson approximation for cycles in the generalised random graph

Published online by Cambridge University Press:  03 November 2025

Matthias Lienau*
Affiliation:
Hamburg University of Technology
*
*Postal address: Am Schwarzenberg-Campus 3, Building E, 21073 Hamburg, Germany. Email: matthias.lienau@tuhh.de

Abstract

The generalised random graph contains n vertices with positive i.i.d. weights. The probability of adding an edge between two vertices is increasing in their weights. We require the weight distribution to have finite second moments, and study the point process $\mathcal{C}_n$ on $\{3,4,\ldots\}$, which counts how many cycles of the respective length are present in the graph. We establish convergence of $\mathcal{C}_n$ to a Poisson point process. Under the stronger assumption of the weights having finite fourth moments we provide the following results. When $\mathcal{C}_n$ is evaluated on a bounded set A, we provide a rate of convergence. If the graph is additionally subcritical, we extend this to unbounded sets A at the cost of a slower rate of convergence. From this we deduce the limiting distribution of the length of the shortest and longest cycles when the graph is subcritical, including rates of convergence. All mentioned results also apply to the Chung–Lu model and the Norros–Reittu model.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angel, O., van der Hofstad, R. and Holmgren, C. (2019). Limit laws for self-loops and multiple edges in the configuration model. Ann. Inst. H. Poincaré Prob. Statist. 55, 15091530.10.1214/18-AIHP926CrossRefGoogle Scholar
Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Prob. 17, 925.CrossRefGoogle Scholar
Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2010). Scaling limits for critical inhomogeneous random graphs with finite third moments. Electron. J. Prob. 15, 16821703.CrossRefGoogle Scholar
Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2012). Novel scaling limits for critical inhomogeneous random graphs. Ann. Prob. 40, 22992361.CrossRefGoogle Scholar
Bianconi, G. and Marsili, M. (2005). Loops of any size and Hamilton cycles in random scale-free networks. J. Statist. Mech. 2005, P06005.CrossRefGoogle Scholar
Bobkov, S. G., Danshina, M. A. and Ulyanov, V. V. (2021). Rate of convergence to the Poisson law of the numbers of cycles in the generalized random graphs. Operator Theory and Harmonic Analysis: OTHA 2020 (Springer Proceedings in Mathematics & Statistics 358), eds A. N. Karapetyants et al., pp. 109133. Springer, Cham.CrossRefGoogle Scholar
Bollobás, B. (2001). Random Graphs (Cambridge Studies in Advanced Mathematics 73), 2nd edn. Cambridge University Press, Cambridge.10.1017/CBO9780511814068CrossRefGoogle Scholar
Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122.10.1002/rsa.20168CrossRefGoogle Scholar
Britton, T., Deijfen, M. and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree distribution. J. Statist. Phys. 124, 13771397.10.1007/s10955-006-9168-xCrossRefGoogle Scholar
Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Nat. Acad. Sci. USA 99, 1587915882.10.1073/pnas.252631999CrossRefGoogle Scholar
Erhardsson, T. (2005). Stein’s method for Poisson and compound Poisson approximation. In An Introduction to Stein’s Method (Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 4), eds A. D. Barbour and L. H. Y. Chen, pp. 61113. Singapore University Press, Singapore.10.1142/9789812567680_0002CrossRefGoogle Scholar
van den Esker, H., van der Hofstad, R. and Hooghiemstra, G. (2008). Universality for the distance in finite variance random graphs. J. Statist. Phys. 133, 169202.CrossRefGoogle Scholar
Gao, P., van der Hofstad, R., Southwell, A. and Stegehuis, C. (2020). Counting triangles in power-law uniform random graphs. Electron. J. Combin. 27, P3.19.Google Scholar
van der Hofstad, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge University Press, Cambridge.Google Scholar
van der Hofstad, R., van Leeuwaarden, J. S. H. and Stegehuis, C. (2021). Optimal subgraph structures in scale-free configuration models. Ann. Appl. Prob. 31, 501537.CrossRefGoogle Scholar
Janson, S. (2008). The largest component in a subcritical random graph with a power law degree distribution. Ann. Appl. Prob. 18, 16511668.10.1214/07-AAP490CrossRefGoogle Scholar
Janson, S. (2010). Asymptotic equivalence and contiguity of some random graphs. Random Structures Algorithms 36, 2645.10.1002/rsa.20297CrossRefGoogle Scholar
Janssen, A. J. E. M., van Leeuwaarden, J. S. H. and Shneer, S. (2019). Counting cliques and cycles in scale-free inhomogeneous random graphs. J. Statist. Phys. 175, 161184.10.1007/s10955-019-02248-wCrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham.10.1007/978-3-319-41598-7CrossRefGoogle Scholar
Kallenberg, O. (2021). Foundations of Modern Probability. Springer.CrossRefGoogle Scholar
Liu, Q. and Dong, Z. (2020). Limit laws for the number of triangles in the generalized random graphs with random node weights. Statist. Prob. Lett. 161, 108733.10.1016/j.spl.2020.108733CrossRefGoogle Scholar
Liu, Q., Dong, Z. and Wang, E. (2017). Moment-based spectral analysis of large-scale generalized random graphs. IEEE Access 5, 94539463.10.1109/ACCESS.2017.2704880CrossRefGoogle Scholar
Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. Appl. Prob. 38, 5975.CrossRefGoogle Scholar
Ross, N. (2011). Fundamentals of Stein’s method. Prob. Surveys 8, 210293.10.1214/11-PS182CrossRefGoogle Scholar
Schinazi, R. B. (2022). Probability with Statistical Applications, 3rd edn. Birkhäuser/Springer, Cham.10.1007/978-3-030-93635-8CrossRefGoogle Scholar
Voitalov, I., van der Hoorn, P., van der Hofstad, R. and Krioukov, D. (2019). Scale-free networks well done. Phys. Rev. Res. 1, 033034.CrossRefGoogle Scholar