Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-09-19T16:37:07.658Z Has data issue: false hasContentIssue false

A note on subadditivity of value at risks (VaRs): A new connection to comonotonicity

Published online by Cambridge University Press:  18 September 2025

Yuri Imamura*
Affiliation:
Tokyo University of Science
Takashi Kato*
Affiliation:
Association of Mathematical Finance Laboratory
*
*Postal address: Department of Business Economics, School of Management, Tokyo University of Science, 1–11–2, Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan. Email address: imamuray@rs.tus.ac.jp
**Postal address: 2-2-15, Minamiaoyama, Minato-ku, Tokyo 107-0062, Japan. Email address: takashi.kato@mathfi-lab.com

Abstract

In this paper, we provide a new property of value at risk (VaR), which is a standard risk measure that is widely used in quantitative financial risk management. We show that the subadditivity of VaR for given loss random variables holds for any confidence level if and only if those are comonotonic. This result also gives a new equivalent condition for the comonotonicity of random vectors.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Cheung, K. C. (2008). Characterization of comonotonicity using convex order. Insurance Math. Econom. 43, 403406.10.1016/j.insmatheco.2008.08.002CrossRefGoogle Scholar
Cheung, K. C. (2010). Characterizing a comonotonic random vector by the distribution of the sum of its components. Insurance Math. Econom. 47, 130136.10.1016/j.insmatheco.2010.06.004CrossRefGoogle Scholar
Cuesta-Albertos, J. A., Rüschendorf, L. and Tuero-Diaz, A. (1993). Optimal coupling of multivariate distributions and stochastic processes. J. Multivariate Anal. 46, 335361.10.1006/jmva.1993.1064CrossRefGoogle Scholar
Denuit, M., Dhaene, J., Ghossoub, M. and Robert, C. Y. (2025). Comonotonicity and Pareto optimality, with application to collaborative insurance. Insurance Math. Econom. 120, 116.10.1016/j.insmatheco.2024.11.001CrossRefGoogle Scholar
Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. and Vyncke, D. (2002). The concept of comonotonicity in actuarial science and finance: Theory. Insurance Math. Econom. 31, 333.10.1016/S0167-6687(02)00134-8CrossRefGoogle Scholar
Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. and Vyncke, D. (2002). The concept of comonotonicity in actuarial science and finance: Application. Insurance Math. Econom. 31, 133161.10.1016/S0167-6687(02)00135-XCrossRefGoogle Scholar
Embrechts, P., McNeil, A. and Straumann, D. (1999). Correlation and dependency in risk management: Properties and pitfalls. In Value at Risk and Beyond, ed. M. Dempster, pp. 176223. Cambridge University Press, Cambridge.Google Scholar
Föllmer, H. and Schied, A. (2016). Stochastic Finance: An Introduction in Discrete Time, 4th edn. De Gruyter, Berlin.Google Scholar
McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management. Princeton University Press, Princeton.Google Scholar
Mao, T. and Hu, T. (2011). A new proof of Cheung’s characterization of comonotonicity. Insurance Math. Econom. 48, 214216.10.1016/j.insmatheco.2010.11.003CrossRefGoogle Scholar