Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-27T22:06:46.237Z Has data issue: false hasContentIssue false

Partial Hopf actions on generalized matrix algebras

Published online by Cambridge University Press:  26 November 2025

Dirceu Bagio*
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis, 88040-970, SC, Brazil
Eliezer Batista
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis, 88040-970, SC, Brazil
Hector Pinedo
Affiliation:
Escuela de Matematicas, Universidad Industrial de Santander, Bucaramanga, Colombia
*
Corresponding author: Dirceu Bagio; Email: d.bagio@ufsc.br

Abstract

Let $\Bbbk$ be a field, $H$ a Hopf algebra over $\Bbbk$, and $R = (_iM_j)_{1 \leq i,j \leq n}$ a generalized matrix algebra. In this work, we establish necessary and sufficient conditions for $H$ to act partially on $R$. To achieve this, we introduce the concept of an opposite covariant pair and demonstrate that it satisfies a universal property. In the special case where $H = \Bbbk G$ is the group algebra of a group $G$, we recover the conditions given in [7] for the existence of a unital partial action of $G$ on $R$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abadie, F., Dokuchaev, M., Exel, R. and Simón, J. J., Morita equivalence of partial group actions and globalization, Trans. Amer. Math. Soc 368(1) (2016), 49574992.10.1090/tran/6525CrossRefGoogle Scholar
Alves, M. M. S., Batista, E. and Vercruysse, J., Partial representations of Hopf algebras, J. Algebra 426 (2015), 137187.10.1016/j.jalgebra.2014.12.011CrossRefGoogle Scholar
Alves, M. M. S., Batista, E., Castro, F., Quadros, G. and Vercruysse, J., Partial corepresentations of Hopf algebras, J. Algebra 426 (2021), 74135.10.1016/j.jalgebra.2021.03.001CrossRefGoogle Scholar
Alves, M. M. S. and Batista, E., Partial Hopf actions, partial invariants, and a morita context, Algebra Discrete Math 3 (2009), 119.Google Scholar
Alves, M. M. S. and Ferraza, T., Morita equivalence and globalization for partial Hopf actions on nonunital algebras, J. Algebra Appl 24(11) (2025), 2550262.10.1142/S0219498825502627CrossRefGoogle Scholar
nh, P. N.Á., Birkenmeyer, G. F. and van Wik, L., Peirce decompositions, idempotents and rings, J. Algebra 564 (2020), 247275.Google Scholar
Bagio, D. and Pinedo, H., Partial actions of groups on generalized matrix rings, J. Algebra 663 (2025), 533564.10.1016/j.jalgebra.2024.09.018CrossRefGoogle Scholar
Batista, E., Partial actions: what they are and why we care, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 3571.10.36045/bbms/1489888814CrossRefGoogle Scholar
Brown, W. P., Generalized matrix algebras, Canad. J. Math 7 (1955), 188190.10.4153/CJM-1955-023-2CrossRefGoogle Scholar
Caenepeel, S. and Janssen, K., Partial (co) actions of Hopf algebras and partial Hopf-Galois theory, Comm. Algebra 36(8) (2008), 29232946.10.1080/00927870802110334CrossRefGoogle Scholar
Dokuchaev, M. and Exel, R., Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Amer. Math. Soc 357 (2005), 19311952.10.1090/S0002-9947-04-03519-6CrossRefGoogle Scholar
Dokuchaev, M., Ferrero, M. and Paques, A., Partial actions and galois theory, J. Pure Appl. Algebra 208(1) (2007), 7787.10.1016/j.jpaa.2005.11.009CrossRefGoogle Scholar
Haghany, A. and Varadarajan, K., Study of modules over formal triangular matrix rings, J. of Pure and Appl. Algebra 147 (2000), 4158.10.1016/S0022-4049(98)00129-7CrossRefGoogle Scholar
Krylov, P. A. and Tuganbaev, A. A., Modules over formal matrix rings, J. Math. Sci 171(2) (2010), 248295.10.1007/s10958-010-0133-5CrossRefGoogle Scholar
Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. ep. Tokyo Kyoiku Daigaku, Sect. A 150 (1958), 83142.Google Scholar
Tang, G., Li, C. and Zhou, Y., Study of morita contexts, Comm. Algebra 42(4) (2014), 16681681.10.1080/00927872.2012.748327CrossRefGoogle Scholar