Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-08-31T14:34:36.890Z Has data issue: false hasContentIssue false

Contrôle par les coefficients dans le modèle elrod-adams

Published online by Cambridge University Press:  15 August 2002

Mohamed El Alaoui Talibi
Affiliation:
Faculté des Sciences Semalila, Département de Mathématiques, BP. 2930 Marrakech, Maroc ; elalaoui@ucam.ac.ma.
Abdellah El Kacimi
Affiliation:
Faculté des Sciences Semalila, Département de Mathématiques, BP. 2930 Marrakech, Maroc ; elalaoui@ucam.ac.ma.
Get access

Abstract

The purpose of this paper is to study a control bycoefficients problem issued from the elastohydrodynamic lubrication. Thecontrol variable is the film thickness.The cavitation phenomenon takes placeand described by the Elrod-Adams model, suggested in preference to theclassical variational inequality due to its ability to describe input andoutput flow.The idea is to use the penalization in the state equation  byapproximating the Heaviside graph whith a sequence of monotone and regularfunctions. We derive a necessary condition for the regularized problem,  thenwe establish estimates of the state and the adjoint state in the onedimensional case. Next we pass to the limit.

Information

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

C. Alvarez, Problemas de frontiera libre en teoría de lubrificación. Ph.D. Thesis, Complutense University of Madrid (1986).
Barbu, V., Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities. J. Math. Anal. Appl. 80 (1981) 566-598. CrossRef
Barbu, V., Necessary conditions for distributed control problems governed by parabolic variational inequalities. SIAM. J. Control Optim. 19 (1981) 64-86. CrossRef
Bayada, G. et Chambat, M., Sur quelques modélisation de la zone de cavitation en lubrification hydrodynamique. J. Méc. Théor. Appl. 5 (1986) 703-729.
Bayada, G. et Chambat, M., Existence and uniqueness for a lubrification problem with non regular conditions on the free boundary. Boll. Un Math. Ital. 6 (1984) 543-547.
Bayada, G. et El Alaoui Talibi, M., Control by coefficients in a variational inequality: The inverse elastohydrodynamic lubrication problem. Nonlinear Analysis: Real World Applications 1 (2000) 315-328. CrossRef
Bayada, G. et El Alaoui Talibi, M., Une méthode du type caractérisitique pour la résolution d'un problème de lubrification hydrodynamique en régime transitoire. ESAIM: M2AN 25 (1991) 395-423.
A. Bensoussan, J.L. Lions et G. Papanicolau, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978).
H. Brezis, Analyse fonctionnelle Théorie et Application. Masson, Paris (1983).
A. Cameron, Basic Lubrication Theory. John Whiley & Sons (1981).
Casas, E. et Bonnans, F., An extension of pontryagin's principle for state-constrainted optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33 (1995) 274-298. CrossRef
Casas, E. et Bonnans, F., Optimal control of semilinear multistate systems with state constraints. SIAM J. Control Optim. 27 (1989) 446-455.
Casas, E., Kavian, O. et Puel, J.P., Optimal control of an ill-posed elliptic semilinear equation whith an exponential non linearity. ESAIM: COCV 3 (1998) 361-380. CrossRef
G. Elrod H. et M.L. Adams, A computer program for cavitation, in st LEEDS LYON symposium on cavitation and related phenomena in lubrication, I.M.E. (1974).
D. Gilbarg et N.S. Trudinger, Elliptic Partial Differential Equations of second Order. Springer-Verlag (1983).
O.A. Ladyzhenskaya et N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press (1968).
M.H. Meurisse, Solution of the inverse problem in hydrodynamic lubrication, in Proc. of the X Lyon Leeds International Symposium (1983) 104-107.
J.F. Rodrigues, Obstacle problems in mathematical physics. North-Holland, Amsterdam (1978).
G. Stampachia et D. Kinderleher, An introduction to variational inequalities and applications. Academic Press (1980).