Let  
 ${{B}_{p}}$  be the unit ball in  
 ${{\mathbb{L}}_{p}}$  ,  
 $0\,<\,p\,<\,1$ , and let  
 $\Delta _{+}^{s}$ ,  
 $s\,\in \,\mathbb{N}$ , be the set of all  
 $s$ -monotone functions on a finite interval  
 $I$ , i.e.,  
 $\Delta _{+}^{s}$  consists of all functions  
 $x\,:\,I\,\mapsto \,\mathbb{R}$  such that the divided differences  
 $[x;\,{{t}_{0}},\,...\,,\,{{t}_{s}}]$ of order  
 $s$  are nonnegative for all choices of  
 $\left( s\,+\,1 \right)$  distinct points  
 ${{t}_{0}},\,.\,.\,.\,,{{t}_{s}}\,\in \,I.$  For the classes  
 $\Delta _{+}^{s}{{B}_{P}}\,:=\,\Delta _{+}^{s}\,\cap \,{{B}_{P}},$  we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces  
 ${{\mathbb{L}}_{q}},$  
 $0\,<\,q\,<\,p\,<\,1$ :
  
 $${{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{psd}}\asymp {{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{kol}}\asymp {{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{lin}}\asymp {{n}^{-s}}.$$