Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-11T23:05:43.480Z Has data issue: false hasContentIssue false

Non-spherical sets versus lines in Euclidean Ramsey theory

Published online by Cambridge University Press:  22 August 2025

David Conlon*
Affiliation:
Department of Mathematics, https://ror.org/05dxps055 California Institute of Technology , Pasadena, CA 91125, United States
Jakob Führer
Affiliation:
Institute for Algebra, https://ror.org/052r2xn60 Johannes Kepler University , 4040 Linz, Austria e-mail: jakob.fuehrer@jku.at

Abstract

We show that for every non-spherical set X in $\mathbb {E}^d$, there exists a natural number m and a red/blue-coloring of $\mathbb {E}^n$ for every n such that there is no red copy of X and no blue progression of length m with each consecutive point at distance $1$. This verifies a conjecture of Wu and the first author.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

D.C. was supported by NSF Awards DMS-2054452 and DMS-2348859. J.F. was supported by the Austrian Science Fund (FWF) under the project W1230.

References

Arman, A. and Tsaturian, S., Equally spaced collinear points in Euclidean Ramsey theory. Preprint, arXiv:1705.04640 [math.CO].Google Scholar
Conlon, D. and Fox, J., Lines in Euclidean Ramsey theory . Discrete Comput. Geom. 61(2019), no. 1, 218225.Google Scholar
Conlon, D. and Wu, Y.-H., More on lines in Euclidean Ramsey theory . C. R. Math. Acad. Sci. Paris 361(2023), 897901.Google Scholar
Currier, G., Moore, K., and Yip, C. H., Avoiding short progressions in Euclidean Ramsey theory . J. Combin. Theory Ser. A 217(2026), Article no. 106080, 17 pp.Google Scholar
Erdős, P., Graham, R. L., Montgomery, P., Rothschild, B. L., Spencer, J., and Straus, E. G., Euclidean Ramsey theorems. I. J. Combin. Theory Ser. A 14(1973), 341363.Google Scholar
Erdős, P., Graham, R. L., Montgomery, P., Rothschild, B. L., Spencer, J., and Straus, E. G., Euclidean Ramsey theorems. II . In: A. Hajnal, R. Rado and Vera T. Sós (eds.), Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday). Vol. 10. Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, 1975, pp. 529557.Google Scholar
Erdős, P., Graham, R. L., Montgomery, P., Rothschild, B. L., Spencer, J., and Straus, E. G., Euclidean Ramsey theorems. III . In: A. Hajnal, R. Rado and Vera T. Sós (eds.), Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday). Vol. 10. Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam, 1975, pp. 559583.Google Scholar
Frankl, P. and Rödl, V., A partition property of simplices in Euclidean space . J. Amer. Math. Soc. 3(1990), no. 1, 17.Google Scholar
Führer, J. and Tóth, G., Progressions in Euclidean Ramsey theory . Eur. J. Combin. 125(2025), Article no. 104105, 10 pp.Google Scholar
Koksma, J. F., Some theorems on Diophantine inequalities. Vol. 5. Scriptum Mathematisch Centrum, Amsterdam, 1950, pp. i+51.Google Scholar
Kříž, I., Permutation groups in Euclidean Ramsey theory . Proc. Amer. Math. Soc. 112(1991), no. 3, 899907.Google Scholar
Leader, I., Russell, P. A., and Walters, M., Transitive sets and cyclic quadrilaterals . J. Combin. 2(2011), no. 3, 457462.Google Scholar
Leader, I., Russell, P. A., and Walters, M., Transitive sets in Euclidean Ramsey theory . J. Combin. Theory Ser. A 119(2012), no. 2, 382396.Google Scholar
Szlam, A. D., Monochromatic translates of configurations in the plane . J. Combin. Theory Ser. A 93(2001), no. 1, 173176.Google Scholar
Weyl, H., Über die Gleichverteilung von Zahlen mod. Eins . Math. Ann. 77(1916), no. 3, 313352.Google Scholar