Published online by Cambridge University Press: 20 November 2018
We extend Maxwell’s representation of harmonic polynomials to   $h$ -harmonics associated to a reflection invariant weight function
 $h$ -harmonics associated to a reflection invariant weight function   ${{h}_{k}}$ . Let
 ${{h}_{k}}$ . Let   ${{\mathcal{D}}_{i}},\,1\,\le \,i\,\le \,d$ , be Dunkl’s operators associated with a reflection group. For any homogeneous polynomial
 ${{\mathcal{D}}_{i}},\,1\,\le \,i\,\le \,d$ , be Dunkl’s operators associated with a reflection group. For any homogeneous polynomial   $P$  of degree
 $P$  of degree   $n$ ,we prove the polynomial
 $n$ ,we prove the polynomial   ${{\left| x \right|}^{2\gamma +d-2+2n}}P\left( \mathcal{D} \right)\left\{ 1/{{\left| x \right|}^{2\gamma +d-2}} \right\}$  is a
 ${{\left| x \right|}^{2\gamma +d-2+2n}}P\left( \mathcal{D} \right)\left\{ 1/{{\left| x \right|}^{2\gamma +d-2}} \right\}$  is a   $h$ -harmonic polynomial of degree
 $h$ -harmonic polynomial of degree   $n$ , where
 $n$ , where   $\gamma \,=\,\sum \,ki$  and
 $\gamma \,=\,\sum \,ki$  and   $\mathcal{D}\,=\,\left( {{\mathcal{D}}_{1}},\ldots ,{{\mathcal{D}}_{d}} \right)$ . The construction yields a basis for
 $\mathcal{D}\,=\,\left( {{\mathcal{D}}_{1}},\ldots ,{{\mathcal{D}}_{d}} \right)$ . The construction yields a basis for   $h$ -harmonics. We also discuss self-adjoint operators acting on the space of
 $h$ -harmonics. We also discuss self-adjoint operators acting on the space of   $h$ -harmonics.
 $h$ -harmonics.