No CrossRef data available.
Published online by Cambridge University Press: 21 June 2023
In this note, assuming the nonvanishing result of explicit theta correspondence for the symplectic–orthogonal dual pair over quaternion algebra  $\mathbb {H}$, we show that, for metapletic–orthogonal dual pair over
$\mathbb {H}$, we show that, for metapletic–orthogonal dual pair over  $\mathbb {R}$ and the symplectic–orthogonal dual pair over quaternion algebra
$\mathbb {R}$ and the symplectic–orthogonal dual pair over quaternion algebra  $\mathbb {H}$, the theta correspondence is compatible with tempered condition by directly estimating the matrix coefficients, without using the classification theorem.
$\mathbb {H}$, the theta correspondence is compatible with tempered condition by directly estimating the matrix coefficients, without using the classification theorem.
 ${{L}}^2$
matrix coefficients
. J. Reine Angew. Math. 387(1988), 97–110. https://doi.org/10.1515/crll.1988.387.97
Google Scholar
${{L}}^2$
matrix coefficients
. J. Reine Angew. Math. 387(1988), 97–110. https://doi.org/10.1515/crll.1988.387.97
Google Scholar $\left({{SO}}_5,{{SO}}_4\right)$
. J. Inst. Math. Jussieu 10(2011), 235–324. https://doi.org/10.1017/S1474748010000198
CrossRefGoogle Scholar
$\left({{SO}}_5,{{SO}}_4\right)$
. J. Inst. Math. Jussieu 10(2011), 235–324. https://doi.org/10.1017/S1474748010000198
CrossRefGoogle Scholar $\left({Sp}\left({p},{q}\right),{{O}}^{\ast}\left(2{n}\right)\right)$
. J. Funct. Anal. 200(2003), 71–100.CrossRefGoogle Scholar
$\left({Sp}\left({p},{q}\right),{{O}}^{\ast}\left(2{n}\right)\right)$
. J. Funct. Anal. 200(2003), 71–100.CrossRefGoogle Scholar