Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-09-06T07:46:29.516Z Has data issue: false hasContentIssue false

$B_h$-sets of real and complex numbers

Published online by Cambridge University Press:  11 June 2025

Melvyn B. Nathanson*
Affiliation:
Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, United States

Abstract

Let $K = \mathbf {R}$ or $\mathbf {C}$. An n-element subset A of K is a $B_h$-set if every element of K has at most one representation as the sum of h not necessarily distinct elements of A. Associated with the $B_h$-set $A = \{a_1,\ldots , a_n\}$ are the $B_h$-vectors $\mathbf {a} = (a_1,\ldots , a_n)$ in $K^n$. This article proves that “almost all” n-element subsets of K are $B_h$-sets in the sense that the set of all $B_h$-vectors is a dense open subset of $K^n$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Supported in part by PSC-CUNY Research Award Program grant 66197-00 54.

References

Bose, R. C. and Chowla, S., Theorems in the additive theory of numbers . Comment. Math. Helv. 37(1962/63), 141147.Google Scholar
Cheng, Y. C., Greedy Sidon sets for linear forms . J. Number Theory. 266(2025), 225248.Google Scholar
Cilleruelo, J., Ruzsa, I., and Vinuesa, C., Generalized Sidon sets . Adv. Math. 225(2010), no. 5, 27862807.Google Scholar
Cilleruelo, J., Ruzsa, I. Z., and Trujillo, C., Upper and lower bounds for finite ${B}_h[g]$ sequences. J. Number Theory 97(2002), no. 1, 2634.Google Scholar
Dias da Silva, J. A. and Nathanson, M. B., Maximal Sidon sets and matroids . Discrete Math. 309(2009), no. 13, 44894494.Google Scholar
Erdős, P. and Turán, P., On a problem of Sidon in additive number theory, and on some related problems . J. London Math. Soc. 16(1941), 212215.Google Scholar
Kolountzakis, M. N., The density of ${B}_h[g]$ sequences and the minimum of dense cosine sums. J. Number Theory 56(1996), no. 1, 411.Google Scholar
Martin, G. and O’Bryant, K., Constructions of generalized Sidon sets . J. Combin. Theory Ser. A. 113(2006), no. 4, 591607.Google Scholar
Nathanson, M. B., On the ubiquity of Sidon sets . In: D. V. Chudnovsky, G. V. Chudnovsky, and M. B. Nathanson (eds.), Number theory (New York, 2003), Springer, New York, 2004, pp. 263272.Google Scholar
Nathanson, M. B., Sidon sets and perturbations . In: M. B. Nathanson (ed.) Combinatorial and Additive Number Theory IV, Springer Proc. Math. Stat., 347, Springer, Cham, 2021, pp. 401408.Google Scholar
Nathanson, M. B., The Bose-Chowla argument for Sidon sets . J. Number Theory. 238(2022), 133146.Google Scholar
Nathanson, M. B., An inverse problem for finite Sidon sets , M. B. Nathanson (ed.) Combinatorial and additive number theory V, Springer Proc. Math. Stat., vol. 395, Springer, Cham, 2022, pp. 277285. MR 4539832Google Scholar
Nathanson, M. B., Sidon sets for linear forms . J. Number Theory. 239(2022), 207227.Google Scholar
Nathanson, M. B., The third positive element in a greedy ${B}_h$ -set . Palestine J. Math. 14(2025), 213216.Google Scholar
Nathanson, M. B., $\mathbf{Q}$ -independence and the construction of ${B}_h$ -sets of integers and lattice points. Discrete Math. (2025), to appear.Google Scholar
Nathanson, M. B. and O’Bryant, K., The fourth positive element in the greedy ${B}_h$ -set . J. Integer Seq. 27(2024), Article 24.7.3, pages 110.Google Scholar
O’Bryant, K., A complete annotated bibliography of work related to Sidon sequences . Electron. J. Combin. DS11(2004), 39.Google Scholar
O’Bryant, K., Constructing thick ${B}_h$ -sets . J. Integer Seq. 27(2024), no. 1, Paper No. 24.1.2, 17.Google Scholar
Ruzsa, I. Z., Solving a linear equation in a set of integers . I. Acta Arith. 65(1993), no. 3, 259282.Google Scholar