Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-28T11:31:07.263Z Has data issue: false hasContentIssue false

A Cesàro-like operator from a class of analytic function spaces to analytic Besov spaces

Published online by Cambridge University Press:  07 April 2025

Pengcheng Tang*
Affiliation:
School of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

Let $\mu $ be a finite positive Borel measure on $[0,1)$ and $f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H(\mathbb {D})$. For $0<\alpha <\infty $, the generalized Cesàro-like operator $\mathcal {C}_{\mu ,\alpha }$ is defined by

$$ \begin{align*}\mathcal {C}_{\mu,\alpha}(f)(z)=\sum^\infty_{n=0}\left(\mu_n\sum^n_{k=0}\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!}a_k\right)z^n, \ z\in \mathbb{D}, \end{align*} $$

where, for $n\geq 0$, $\mu _n$ denotes the nth moment of the measure $\mu $, that is, $\mu _n=\int _{0}^{1} t^{n}d\mu (t)$.

For $s>1$, let X be a Banach subspace of $H(\mathbb {D})$ with $\Lambda ^{s}_{\frac {1}{s}}\subset X\subset \mathcal {B}$. In this article, for $1\leq p <\infty $, we characterize the measure $\mu $ for which $\mathcal {C}_{\mu ,\alpha }$ is bounded (resp. compact) from X into the analytic Besov space $B_{p}$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The author was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 24C0226).

References

Aleman, A. and Cima, J., An integral operator on ${H}^p$ and Hardy’s inequality. J. Anal. Math. 85(2001), 157176.CrossRefGoogle Scholar
Aleman, A. and Siskakis, A., Integration operators on Bergman spaces . Indiana Univ. Math. J. 46(1997), no. 2, 337356.10.1512/iumj.1997.46.1373CrossRefGoogle Scholar
Bao, G., Guo, K., Sun, F., and Wang, Z., Hankel matrices acting on the Dirichlet space . J. Fourier Anal. Appl. 30(2024), 53.10.1007/s00041-024-10112-zCrossRefGoogle Scholar
Bao, G., Sun, F., and Wulan, H., Carleson measure and the range of Cesàro-like operator acting on ${H}^{\infty }$ . Anal. Math. Phys. 12(2022), Paper No. 142.10.1007/s13324-022-00752-zCrossRefGoogle Scholar
Beltrán-Meneu, M., Bonet, J., and Jordá, E., Cesàro operators associated with Borel measures acting on weighted spaces of holomorphic functions with sup-norms . Anal. Math. Phys. 14(2024), 109.10.1007/s13324-024-00968-1CrossRefGoogle Scholar
Blasco, O., Cesàro-type operators on Hardy spaces . J. Math. Anal. Appl. 540(2023), Paper No. 127017.Google Scholar
Blasco, O., Generalized Cesàro operators on weighted Dirichlet spaces . J. Math. Anal. Appl. 540(2024), no. 1, 128627.10.1016/j.jmaa.2024.128627CrossRefGoogle Scholar
Buckley, S., Koskela, P., and Vukotić, D., Fractional integration, differentiation, and weighted Bergman spaces . Math. Proc. Camb. Philos. Soc. 126(1999), no. 2, 369385.CrossRefGoogle Scholar
Cowen, C. and MacCluer, B., Composition operators on spaces of analytic functions. CRC Press, Boca Raton, FL, 1995.Google Scholar
Danikas, N. and Siskakis, A., The Cesàro operator on bounded analytic functions . Analysis 13(1993), 295299.10.1524/anly.1993.13.3.295CrossRefGoogle Scholar
Duren, P., Theory of ${H}^p$ spaces. Academic Press, New York, NY, 1970.Google Scholar
Galanopoulos, P., Girela, D., Mas, A., and Merchán, N., Operators induced by radial measures acting on the Dirichlet space . Results Math. 78(2023), Paper No. 106.10.1007/s00025-023-01887-6CrossRefGoogle Scholar
Galanopoulos, P., Girela, D., and Merchán, N., Cesàro-like operators acting on spaces of analytic functions . Anal. Math. Phys. 12(2022), Paper No. 51.CrossRefGoogle Scholar
Galanopoulos, P., Girela, D., and Merchán, N., Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions . J. Math. Anal. Appl. 526(2023), Paper No. 127287.10.1016/j.jmaa.2023.127287CrossRefGoogle Scholar
Galanopoulos, P., Siskakis, A., and Zhao, R., Weighted Cesàro type operators between weighted Bergman spaces . Bull. Sci. Math. 202(2025), Paper No. 103622.10.1016/j.bulsci.2025.103622CrossRefGoogle Scholar
Girela, D. and Merchán, N., A generalized Hilbert operator acting on conformally invariant spaces . Banach J. Math. Anal. Appl. 12(2018), 374398.10.1215/17358787-2017-0023CrossRefGoogle Scholar
Guo, Y., Tang, P., and Zhang, X., Cesàro-like operators between the Bloch space and Bergman spaces . Ann. Funct. Anal. 15(2024), Paper No. 8.10.1007/s43034-023-00309-6CrossRefGoogle Scholar
Jin, J. and Tang, S., Generalized Cesàro operator on Dirichlet-type spaces . Acta Math. Sci 42(2022), no. B, 19.10.1007/s10473-022-0111-2CrossRefGoogle Scholar
Miao, J., The Cesàro operator is bounded on ${H}^p$ for $0<p<1$ . Proc. Amer. Math. Soc. 116(1992), 10771079.Google Scholar
Pavlović, M., Analytic functions with decreasing coefficients and Hardy and Bloch spaces . Proc. Edinb. Math. Soc. 56(2013), 623635.10.1017/S001309151200003XCrossRefGoogle Scholar
Pavlović, M. and Mateljević, M., ${L}^p$ -behavior of power series with positive coefficients and Hardy spaces . Proc. Amer. Math. Soc. 87(1983), no. 2, 309316.Google Scholar
Ross, W., The Cesàro operator . In: Condori, A. A., Pozzi, E., Ross, W. T., and Sola, A. A. (eds.), Recent progress in function theory and operator theory, Contemporary Mathematics, 799, American Matematical Society, Providence, Rhode Island, 2024, pp. 185215.10.1090/conm/799/16025CrossRefGoogle Scholar
Rudin, W., Function theory in the unit ball of ${C}^n$ . Springer, New York, NY, 1980.10.1007/978-1-4613-8098-6CrossRefGoogle Scholar
Siskakis, A., Composition semigroups and the Cesàro operator on ${H}^p$ . J. London Math. Soc. 36(1987), 153164.10.1112/jlms/s2-36.1.153CrossRefGoogle Scholar
Siskakis, A., The Cesàro operator is bounded on ${H}^1$ . Proc. Amer. Math. Soc. 110(1990), 461462.Google Scholar
Siskakis, A., On the Bergman space norm of the Cesàro operator . Arch. Math. 67(1996), 43124318.10.1007/BF01197596CrossRefGoogle Scholar
Sun, F., Ye, F., and Zhou, L., A Cesàro-like operator from Besov space to some spaces of analytic functions . Comput. Methods Funct. Theory (2024). https://doi.org/10.1007/s40315-024-00542-7Google Scholar
Tang, P., The Cesàro-like operator on some analytic function spaces . Rocky Mount. J. Math. to appear.Google Scholar
Tang, P., Cesàro-like operators acting on a class of analytic function spaces . Anal. Math. Phys. 13(2023), Paper No. 96.10.1007/s13324-023-00858-yCrossRefGoogle Scholar
Xiao, J., Cesàro-type operators on Hardy, BMOA and Bloch spaces . Arch. Math. 68(1997), 398406.10.1007/s000130050072CrossRefGoogle Scholar
Zhou, Z., Pseudo-Carleson measures and generalized Cesàro-like operators. Preprint. https://doi.org/10.21203/rs.3.rs-2413497/v1.CrossRefGoogle Scholar
Zhu, K., Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.10.1090/surv/138CrossRefGoogle Scholar
Zygmund, A., Trigonometric series. Vol. 1, 2. Cambridge University Press, London, 1959.Google Scholar