Hostname: page-component-7dd5485656-j7khd Total loading time: 0 Render date: 2025-10-29T22:27:58.398Z Has data issue: false hasContentIssue false

Semigroups of holomorphic functions; rectifiability and Lipschitz properties of the orbits

Published online by Cambridge University Press:  28 July 2025

Dimitrios Betsakos
Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece e-mail: betsakos@math.auth.gr
Konstantinos Zarvalis*
Affiliation:
Instituto de Matemáticas de la Universidad de Sevilla, Avenida de Reina Mercedes, s/n, Seville 41012, Spain e-mail: kzarvalis@us.es

Abstract

Let $(\phi _t)$ be a continuous semigroup of holomorphic functions in the unit disk. We prove that all its orbits are rectifiable and that its forward orbits are Lipschitz curves. Moreover, we find a necessary and sufficient condition in terms of hyperbolic geometry so that a backward orbit is a Lipschitz curve. We further explore the Lipschitz condition for forward orbits lying on the unit circle and then for semigroups of holomorphic functions in general simply connected domains.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

K. Zarvalis is supported by Junta de Andalucía, grant number QUAL21 005 USE.

References

Abate, M., Holomorphic dynamics on hyperbolic riemann surfaces, De Gruyter, Berlin, 2023.Google Scholar
Arosio, L., Fiacchi, M., Guerini, L., and Karlsson, A., Backward dynamics of non-expanding maps in Gromov hyperbolic metric spaces . Adv. Math. 439(2024), Article no. 109484, 39 pp.10.1016/j.aim.2023.109484CrossRefGoogle Scholar
Benini, A. M. and Bracci, F., The Denjoy-Wolff theorem in simply connected domains, Preprint. arxiv:2409.11722.Google Scholar
Berkson, E. and Porta, H., Semigroups of analytic functions and composition operators . Michigan Math. J. 25(1978), 101115.10.1307/mmj/1029002009CrossRefGoogle Scholar
Betsakos, D., On the asymptotic behavior of the trajectories of semigroups of holomorphic functions . J. Geom. Anal. 26(2016), 557569.10.1007/s12220-015-9562-1CrossRefGoogle Scholar
Betsakos, D. and Karamanlis, N., On the monotonicity of the speeds for semigroups of holomorphic self-maps of the unit disc . Trans. Amer. Math. Soc. 377(2024), 12991319.10.1090/tran/9048CrossRefGoogle Scholar
Bishop, C. J. and Jones, P. W., Harmonic measure and arclength . Ann. Math. (2) 132(1990), no. 3, 511547.10.2307/1971428CrossRefGoogle Scholar
Bracci, F., Contreras, M. D., and Díaz-Madrigal, S., Continuous semigroups of holomorphic functions in the unit disc, Springer, Cham, 2020.10.1007/978-3-030-36782-4CrossRefGoogle Scholar
Bracci, F., Contreras, M. D., Díaz-Madrigal, S., and Gaussier, H., Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc . Trans. Amer. Math. Soc. 373(2020), 939969.10.1090/tran/7977CrossRefGoogle Scholar
Bracci, F., Contreras, M. D., Díaz-Madrigal, S., Gaussier, H., and Zimmer, A., Asymptotic behavior of orbits of holomorphic semigroups . J. Math. Pures Appl. 133(2020), 263286.10.1016/j.matpur.2019.05.005CrossRefGoogle Scholar
Bracci, F. and Gumenyuk, P., Contact points and fractional singularities for semigroups of holomorphic self-maps of the unit disc . J. Anal. Math. 130(2016), 185217.10.1007/s11854-016-0034-8CrossRefGoogle Scholar
Contreras, M. D. and Díaz-Madrigal, S., Analytic flows on the unit disk: Angular derivatives and boundary fixed points . Pacific J. Math. 222(2005), 253286.10.2140/pjm.2005.222.253CrossRefGoogle Scholar
Contreras, M. D., Diaz-Madrigal, S., and Gumenyuk, P., Slope problem for trajectories of holomorphic semigroups in the unit disk . Comput. Methods Funct. Theory 15(2015), 117124.CrossRefGoogle Scholar
Elin, M., Khavinson, D., Reich, S., and Shoikhet, D., Linearization models for parabolic dynamical systems via Abel’s functional equation . Ann. Acad. Sci. Fenn. Math. 35(2010), 439472.10.5186/aasfm.2010.3528CrossRefGoogle Scholar
Elin, M., Shoikhet, D., and Zalcman, L., A flower structure of backward flow invariant domains for semigroups . Ann. Acad. Sci. Fenn. Math. 33(2008), 334.Google Scholar
Gumenyuk, P., Angular and unrestricted limits of one-parameter semigroups in the unit disk . J. Math. Anal. Appl. 417(2014), 200224.10.1016/j.jmaa.2014.02.057CrossRefGoogle Scholar
Hayman, W. and Wu, J.-M. G., Level sets of univalent functions . Commun. Math. Helv. 56(1981), 366403.10.1007/BF02566219CrossRefGoogle Scholar
Kelgiannis, G., Trajectories of semigroups of holomorphic functions and harmonic measure . J. Math. Anal. Appl. 474(2019), 13641374.10.1016/j.jmaa.2019.02.024CrossRefGoogle Scholar
Kourou, M. and Zarvalis, K., Compact sets in petals and their backward orbits under semigroups of holomorphic functions . Potential Anal. 59(2023), 19131939.10.1007/s11118-022-10036-7CrossRefGoogle Scholar
Øyma, K., Harmonic measure and conformal length . Proc. Amer. Math. Soc. 115(1992), 687690.10.1090/S0002-9939-1992-1101991-1CrossRefGoogle Scholar
Perko, L., Differential equations and dynamical systems. 3rd ed., Springer-Verlag, New York, 2001.CrossRefGoogle Scholar
Pommerenke, C., Boundary behaviour of conformal maps, Springer, Berlin, 1992.10.1007/978-3-662-02770-7CrossRefGoogle Scholar
Zarvalis, K., Quasi-geodesics and backward orbits under semigroups of holomorphic functions . Illinois J. Math. 67(2023), 185202.CrossRefGoogle Scholar