No CrossRef data available.
Published online by Cambridge University Press: 22 August 2025
In this article, for general curves $(t,\gamma (t))$ satisfying some suitable curvature conditions, we obtain some
$L^p(\mathbb {R})\times L^q(\mathbb {R}) \rightarrow L^r(\mathbb {R})$ estimates for the bilinear fractional integrals
$H_{\alpha ,\gamma }$ along the curves
$(t,\gamma (t))$, where
$$ \begin{align*}H_{\alpha,\gamma}(f,g)(x):=\int_{0}^{\infty}f(x-t)g(x-\gamma(t))\,\frac{\textrm{d}t}{t^{1-\alpha}}\end{align*} $$
$\alpha \in (0,1)$. At the same time, we also establish an almost sharp Hardy–Littlewood–Sobolev inequality, i.e., the
$L^p(\mathbb {R})\rightarrow L^q(\mathbb {R})$ estimate, for the fractional integral operators
$I_{\alpha ,\gamma }$ along the curves
$(t,\gamma (t))$, where
$$ \begin{align*}I_{\alpha,\gamma}f(x):=\int_{0}^{\infty}\left|f(x-\gamma(t))\right|\,\frac{\textrm{d}t}{t^{1-\alpha}}.\end{align*} $$
Junfeng Li is supported by the National Natural Science Foundation of China (Grant No. 12471090). Haixia Yu is supported by the National Natural Science Foundation of China (Grant Nos. 12201378 and 12471093), the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2023A1515010635 and 2024A1515010468).