Hostname: page-component-7857688df4-zx5rz Total loading time: 0 Render date: 2025-11-15T12:27:32.116Z Has data issue: false hasContentIssue false

On the gcd-graphs over polynomial rings

Published online by Cambridge University Press:  01 October 2025

Ján Mináč
Affiliation:
Western University (University of Western Ontario) , Canada e-mail: minac@uwo.ca
Tung T. Nguyen
Affiliation:
Lake Forest College , United States e-mail: tnguyen@lakeforest.edu
Nguyễn Duy Tân*
Affiliation:
Faculty Mathematics and Informatics, Hanoi University of Science and Technology , Vietnam

Abstract

Gcd-graphs over the ring of integers modulo n are a natural generalization of unitary Cayley graphs. The study of these graphs has foundations in various mathematical fields, including number theory, ring theory, and representation theory. Using the theory of Ramanujan sums, it is known that these gcd-graphs have integral spectra; i.e., all their eigenvalues are integers. In this work, inspired by the analogy between number fields and function fields, we define and study gcd-graphs over polynomial rings with coefficients in finite fields. We establish some fundamental properties of these graphs, emphasizing their analogy to their counterparts over ${\mathbb {Z}}.$

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

J.M. is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant R0370A01. He gratefully acknowledges the Western University Faculty of Science Distinguished Professorship 2020–2021. T.T.N. is partially supported by an AMS-Simons Travel Grant. Parts of this work were done while he was a Postdoc Associate at Western University. He thanks Western University for their hospitality. N.D.T. is partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2023.21.

References

Akhtar, R., Boggess, M., Jackson-Henderson, T., Jiménez, I., Karpman, R., Kinzel, A., and Pritikin, D., On the unitary Cayley graph of a finite ring . Electron. J. Combin. 16(2009), no. 1, Research Paper 117, 13 pp.Google Scholar
Artin, E., Quadratische Körper im Gebiete der höheren Kongruenzen. II . Math. Z. 19(1924), no. 1, 207246.Google Scholar
Asratian, A. S., Denley, T. M. J., and Häggkvist, R., Bipartite graphs and their applications. Vol. 131, Cambridge University Press, Cambridge, 1998.Google Scholar
Bašić, M. and Ilić, A., Polynomials of unitary Cayley graphs . Filomat 29(2015), no. 9, 20792086.Google Scholar
Biswas, A., On a Cheeger type inequality in Cayley graphs of finite groups . Eur. J. Comb. 81(2019), 298308.Google Scholar
Boccaletti, S., Bianconi, G., Criado, R., Charo, D. G. I, Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., and Zanin, M., The structure and dynamics of multilayer networks . Phys. Rep. 544(2014), no. 1, 1122.Google Scholar
Brandstädt, A., Le, V. B., and Spinrad, J. P., Graph classes: A survey, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1999.Google Scholar
Chidambaram, S., Mináč, J., Nguyen, T. T., and Tan, N. D., Fekete polynomials of principal Dirichlet characters . J. Exp. Math. 1(2025), no. 1, 5193.Google Scholar
Chudnovsky, M., Cizek, M., Crew, L., Mináč, J., Nguyen, T. T., Spirkl, S., and Tân, N. D., On prime Cayley graphs. Preprint, 2024. arXiv:2401.06062. to appear in Journal of Combinatorics.Google Scholar
Chvátal, V. and Berge, C., Topics on perfect graphs, Elsevier, Amsterdam, 1984.Google Scholar
Dilworth, R. P., A decomposition theorem for partially ordered sets . In: I. Gessel and G.-C. Rota (eds.), Classic papers in combinatorics, Modern Birkhäuser Classics, Birkhäuser, Massachusetts, 1987, pp. 139144.Google Scholar
Erdös, P. and Evans, A. B., Representations of graphs and orthogonal Latin square graphs . J. Graph Theory 13(1989), no. 5, 593595.Google Scholar
Gallai, T., Transitiv orientierbare graphen . Acta Math. Hungar. 18(1967), nos. 1–2, 2566.Google Scholar
Jain, P. B., Nguyen, T. T., Mináč, J., Muller, L. E., and Budzinski, R. C., Composed solutions of synchronized patterns in multiplex networks of Kuramoto oscillators . Chaos Interdiscipl. J. Nonlinear Sci. 33(2023), no. 10. Paper No. 103128, 14 pp.Google Scholar
Kanemitsu, S. and Waldschmidt, M., Matrices of finite abelian groups, finite Fourier transform and codes . In: S. Kanemitsu, H. Li, and J. Liu (eds.), Proceedings of the 6th China-Japan seminar number theory, World Scientific, London, 2013, pp. 90106.Google Scholar
Kiani, D. and Aghaei, M. M. H., On the unitary Cayley graph of a ring . Electron. J. Comb. (2012), P10.Google Scholar
Kiani, D. and Mollahajiaghaei, M., On the unitary Cayley graphs of matrix algebras . Linear Algebra Appl. 466(2015), 421428.Google Scholar
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A., Multilayer networks . J. Compl. Netw. 2(2014), no. 3, 203271.Google Scholar
Klotz, W. and Sander, T., Some properties of unitary Cayley graphs . Electron. J. Comb. 14(2007), no. 1, R45, 12 pp.Google Scholar
Kowalski, E, Exponential sums over finite fields, I: elementary methods, preparation, 2021. https://www.math.ethz.ch/kowalski/exp-sums.pdf Google Scholar
Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, NY, 1999.Google Scholar
Lamprecht, E., Allgemeine theorie der Gaußschen Summen in endlichen kommutativen Ringen . Math. Nachr. 9(1953), no. 3, 149196.Google Scholar
Merzel, J. L, Mináč, J., Nguyen, T. T, and Tân, N. D., On divisibility relation graphs. Preprint, 2025. arXiv:2507.06873.Google Scholar
Mináč, J., Nguyen, T. T., and Tan, N. D., Gcd-graphs over function fields. 2024. https://github.com/tungprime/gcdgraphs Google Scholar
Mirsky, L., A dual of Dilworth’s decomposition theorem . Am. Math. Month. 78(1971), no. 8, 876877.Google Scholar
Nguyen, T. T., Budzinski, R. C, Pasini, F. W, Delabays, R., Mináč, J., and Muller, L. E, Broadcasting solutions on networked systems of phase oscillators . Chaos, Solitons Fract. 168(2023), 113166.Google Scholar
Nguyen, T. T. and Tân, N. D., On certain properties of the $p$ -unitary Cayley graph over a finite ring. Preprint, 2024. arXiv:2403.05635.Google Scholar
Nguyen, T. T. and Tân, N. D., Integral Cayley graphs over a finite symmetric algebra . Arch. Math. 124(2025), 615623.Google Scholar
Podestá, R. A. and Videla, D. E., The waring’s problem over finite fields through generalized Paley graphs . Discret. Math. 344(2021), no. 5, 112324.Google Scholar
Podestá, R. A. and Videla, D. E., Connected components and non-bipartiteness of generalized Paley graphs . Ann. Comb. (2025). https://doi.org/10.1007/s00026-025-00758-x.Google Scholar
Podestá, R. A. and Videla, D. E., Spectral properties of generalized Paley graphs and their associated irreducible cyclic codes . Australas. J. Combin. 91(2025), no. 3, 326365.Google Scholar
So, W., Integral circulant graphs . Discret. Math. 306(2006), no. 1, 153158.Google Scholar
Weil, A., Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques . Revue Scient 77(1939), 104106.Google Scholar