No CrossRef data available.
Published online by Cambridge University Press: 31 October 2023
Let  $\Gamma \subset \overline {\mathbb {Q}}^*$ be a finitely generated subgroup. Denote by
$\Gamma \subset \overline {\mathbb {Q}}^*$ be a finitely generated subgroup. Denote by  $\Gamma _{\mathrm {div}}$ its division group. A recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute logarithmic Weil height of an element of
$\Gamma _{\mathrm {div}}$ its division group. A recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute logarithmic Weil height of an element of  $\mathbb {Q}(\Gamma _{\mathrm {div}})^*\backslash \Gamma _{\mathrm {div}}$ is bounded from below by a positive constant depending only on
$\mathbb {Q}(\Gamma _{\mathrm {div}})^*\backslash \Gamma _{\mathrm {div}}$ is bounded from below by a positive constant depending only on  $\Gamma $. In this paper, we propose a new way to tackle this problem.
$\Gamma $. In this paper, we propose a new way to tackle this problem.
This work was funded by Morningside Center of Mathematics, CAS.
 $\mathbb{Q}$
. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12(2001), 5–14.Google Scholar
$\mathbb{Q}$
. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12(2001), 5–14.Google Scholar $p$
-adic numbers
. Acta Arith. 170(2015), no. 1, 15–25.CrossRefGoogle Scholar
$p$
-adic numbers
. Acta Arith. 170(2015), no. 1, 15–25.CrossRefGoogle Scholar $v$
-adic field. Preprint, 2021. arXiv:2103.07270
Google Scholar
$v$
-adic field. Preprint, 2021. arXiv:2103.07270
Google Scholar ${G}_m^n\times A$
. Bull. Lond. Math. Soc. 54(2022), no. 6, 2278–2296.CrossRefGoogle Scholar
${G}_m^n\times A$
. Bull. Lond. Math. Soc. 54(2022), no. 6, 2278–2296.CrossRefGoogle Scholar ${\mathbb{Q}}^{tr}$
. J. Théor. Nombres Bordeaux 28(2016), no. 3, 735–742.CrossRefGoogle Scholar
${\mathbb{Q}}^{tr}$
. J. Théor. Nombres Bordeaux 28(2016), no. 3, 735–742.CrossRefGoogle Scholar ${\overline{\mathbb{Q}}}^{\ast }$
. Int. J. Number Theory 17(2021), no. 5, 1079–1089.CrossRefGoogle Scholar
${\overline{\mathbb{Q}}}^{\ast }$
. Int. J. Number Theory 17(2021), no. 5, 1079–1089.CrossRefGoogle Scholar