Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-13T15:21:03.885Z Has data issue: false hasContentIssue false

ON THE PRIMITIVITY OF THE TRINOMIAL $x^{n}+ax^{k}+b$ OVER $\mathbb {F}_{q}$

Published online by Cambridge University Press:  11 September 2025

SOUFYANE BOUGUEBRINE
Affiliation:
https://ror.org/02xv2bn88 National Higher School of Mathematics , Sidi Abdellah, Algiers, Algeria e-mail: soufyane.bouguebrine@nhsm.edu.dz
RACHID BOUMAHDI*
Affiliation:
https://ror.org/02xv2bn88 National Higher School of Mathematics , Sidi Abdellah, Algiers, Algeria

Abstract

This note provides an alternative proof of a theorem by Li et al. [‘On the primitivity of some trinomials over finite fields’, Adv. Math. (China) 44(3) (2015), 387–393] regarding the nonprimitivity of the trinomial $x^{n}+ax+b$ over $\mathbb {F}_{q^{m}}$ under the condition $a^{n}b^{1-n}\in \mathbb {F}_{q^{u}}^{\ast }$ for some positive integer $u<m$. We extend this result to the trinomial $x^{n}+a^{k}x^{k}+b^{k}$, showing its nonprimitivity over $\mathbb {F}_{q^{m}}$ when $ a^{n}b^{k-n}\in \mathbb {F}_{q^{u}}^{\ast }$ for some positive integer $u<m$. While the existing proof relies on the theory of linear recurrences over finite fields, our approach is short and self-contained, requiring no prior knowledge of this area.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alizadeh, M., ‘Construction of primitive polynomials over finite fields’, J. Algebra Appl. 20(5) (2021), Article no. 2150078.10.1142/S021949882150078XCrossRefGoogle Scholar
Brent, R. P. and Zimmermann, P., ‘The great trinomial hunt’, Notices Amer. Math. Soc. 58(2) (2011), 233239.Google Scholar
Cherchem, A., Bouguebrine, S. and Boughambouz, H., ‘On the construction of irreducible and primitive polynomials from ${F}_{q^m}[x]$ to ${F}_q[x]$ ’, Finite Fields Appl. 78 (2022), Article no. 101971.Google Scholar
Li, Y., Wang, H. and Zhao, J., ‘On the primitivity of some trinomials over finite fields’, Adv. Math. (China) 44(3) (2015), 387393.Google Scholar
Lidl, R. and Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and its Applications, 20 (Cambridge University Press, Cambridge, 1997).Google Scholar
Mullen, G. L. and Panario, D., Handbook of Finite Fields (Chapman and Hall/CRC, New York, 2013).10.1201/b15006CrossRefGoogle Scholar