The theory of continued fractions is an extremely useful tool in approximating irrational numbers by rational numbers. Any number
$x\in \mathbb {R}{\setminus} \mathbb {Q}$
can be uniquely represented by a continued fraction of the form

where
$a_n(x)\in \mathbb {Z}, a_n(x)\geq 1$
for
$n\geq 1$
, is known as the nth partial quotient of x. The classical theory of continued fractions shows that the convergents of the partial quotients of x give exactly the best rational approximation of x (see [Reference Khinchin11, Theorems 16 and 17]. The nth convergent is given by

where
$p_n,q_n\in \mathbb {Z}$
are coprime and
$q_n\geq 1$
. The speed of approximation for any irrational number x is related to the size of the partial quotients by

Kleinbock and Wadleigh [Reference Kleinbock and Wadleigh12] showed that Dirichlet’s theorem is optimal in a precise sense. For any nonincreasing function
$\psi :\mathbb {N}\to \mathbb {R}_+$
, define the set of
$\psi $
-Dirichlet improvable numbers by

Then, Kleinbock and Wadleigh showed for
$x\in [0,1) \setminus \mathbb {Q}$
that:
-
(i)
$x\in D(\psi )$ if
$a_{n+1}(x)a_n(x)\, \le \,\psi (q_n)/4$ for all sufficiently large n;
-
(ii)
$x\not \in D(\psi )$ if
$a_{n+1}(x)a_n(x)\,>\, \psi (q_n)$ for infinitely many n.
The metric theory for the set
$D(\psi )$
is fully characterised in the papers [Reference Bos, Hussain and Simmons2, Reference Huang, Wu and Xu8, Reference Hussain, Kleinbock, Wadleigh and Wang9].
My thesis contains results on the metric theory of continued fraction and Lüroth series expansions. The first result gives metrical properties of the product of partial quotients in the plane. Let
$\Psi :\mathbb N\to \mathbb R_+$
be a function. Define the set, for
$(t_1, \ldots , t_m)\in \mathbb R_{+}^m$
,

For the one-dimensional analogue of this set, the Hausdorff dimension (for
$m=2$
) was determined in [Reference Bakhtawar, Hussain, Kleinbock and Wang1] and can also be deduced from [Reference Hussain and Shulga10]. In my thesis, I prove the following two-dimensional result. Throughout,
$\dim _{H}$
is the Hausdorff dimension.
Theorem 1 [Reference Brown-Sarre and Hussain5].
Let
$\Psi $
be a positive function. Then,

For a nondecreasing function
$\varphi : \mathbb {N} \to [2,\infty )$
and
$\ell \in \mathbb {N}$
, define the set

where ‘i.m.’ stands for ‘infinitely many’. The set
$\mathcal {F}_{\ell }(\varphi )$
arises in the determination of laws of large numbers for partial quotients. Phillip [Reference Philipp13] proved that there is no reasonable function
$\sigma :\mathbb {N}\to \mathbb {R}_+$
such that
${(a_1(x)+a_2(x)+\cdots +a_n(x))}/{\sigma (n)}$
converges almost everywhere as
$n \to \infty $
. However, Diamond and Vaaler [Reference Diamond and Vaaler6] showed that such a relation holds if we omit the largest partial quotient. Hu et al. [Reference Hu, Hussain and Yu7] extended this further by proving the case for the sum of products of two consecutive partial quotients and omitting the largest product. They proved that almost every
$x\in [0,1)$
satisfies

This led Tan et al. in [Reference Tan, Tian and Wang14] and Tan and Zhou in [Reference Tan and Zhou15] to find a zero-one law for the Lebesgue measure of
$\mathcal {F}_1(\varphi )$
. We extend this work to
$\mathcal {F}_{3}(\varphi )$
.
Theorem 2 [Reference Brown-Sarre, González Robert and Hussain4].
Let
$\varphi :\mathbb {N}\to [2,\infty )$
be nondecreasing. The Lebesgue measure
$\lambda $
of
$\mathcal {F}_{3}(\varphi )$
is given by

I further calculate the Hausdorff dimension for
$\mathcal {F}_3(\varphi )$
. Define
$g_3:\mathbb {R}\to \mathbb {R}$
by

For a function
$\varphi :\mathbb {N}\to \mathbb {R}_+$
, let B and b be defined by

Theorem 3 [Reference Brown-Sarre, González Robert and Hussain4].
Let
$\varphi :\mathbb {N}\to [2,\infty )$
be nondecreasing. Then, the Hausdorff dimension of
$\mathcal {F}_3(\varphi )$
is given by

where
$P(T,\cdot )$
is a pressure function.
The thesis also contains a result on the Lebesgue measure of a set associated with the Lüroth series expansion of a real number. Every
$x\in (0,1]$
has a Lüroth series expansion

with a unique sequence
$(d_n)_{n\geq 1}$
of integers at least
$2$
. Let
$m\in \mathbb {N}$
,
$\mathbf {t}=(t_0,\ldots , t_{m-1})\in \mathbb {R}_{+}^m$
and
$\liminf _{n\to \infty }\Psi (n)>1$
. Define the set

and the numbers

and

Theorem 4 [Reference Brown-Sarre, González Robert and Hussain3].
Let
$m\in \mathbb {N}$
and
$\mathbf {t}\in \mathbb {R}_{+}^m$
be arbitrary. If
$\liminf _{n\to \infty } \Psi (n)>1,$
then

Theorem 5 [Reference Brown-Sarre, González Robert and Hussain3].
Let B and b be given by (2). For any
$m\in \mathbb {N}$
and
$\mathbf {t}\in \mathbb {R}_{+}^{m}$
,

Theorem 6 [Reference Brown-Sarre, González Robert and Hussain3].
Suppose
$m=2$
. Let B and b be given by (2) and assume
$1<B<\infty $
. For a given
$\mathbf {t}=(t_0,t_1)\in \mathbb {R}_{+}^2$
, define

Then, the Hausdorff dimension of
$\mathfrak {E}_{\mathbf {t}}(\Psi )$
is the unique solution of

Acknowledgement
I am thankful to my supervisors Associate Professor Mumtaz Hussain and Dr. Gerardo González Robert for their help and support throughout my studies.