No CrossRef data available.
 $_4\phi _3$ IDENTITY
$_4\phi _3$ IDENTITYPublished online by Cambridge University Press: 29 August 2024
We establish a q-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas, which extends a q-congruence of Guo and Zeng [‘Some q-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory 145 (2014), 301–316]. The important ingredients in the proof include Andrews’  $_4\phi _3$ terminating identity.
$_4\phi _3$ terminating identity.
The first author was supported by the National Natural Science Foundation of China (grant no. 12171370).
 ${p}^2$
determination of
${p}^2$
determination of 
 $\left(\frac{\left(p-1\right)/2}{\left(p-1\right)/4}\right)$
’, J. Number Theory 24 (1986), 188–196.CrossRefGoogle Scholar
$\left(\frac{\left(p-1\right)/2}{\left(p-1\right)/4}\right)$
’, J. Number Theory 24 (1986), 188–196.CrossRefGoogle Scholar $q$
-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory 145 (2014), 301–316.CrossRefGoogle Scholar
$q$
-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory 145 (2014), 301–316.CrossRefGoogle Scholar