Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-10-02T22:47:37.722Z Has data issue: false hasContentIssue false

A CONSTRUCTIVE INTERPRETATION OF THE LOGICAL CONSTANTS

Published online by Cambridge University Press:  02 October 2025

MOHAMMAD ARDESHIR
Affiliation:
DEPARTMENT OF MATHEMATICAL SCIENCES SHARIF UNIVERSITY OF TECHNOLOGY P.O. BOX 11365-9415 TEHRAN, IRAN E-mail: mardeshir@sharif.edu
WIM RUITENBURG*
Affiliation:
DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES MARQUETTE UNIVERSITY P.O. BOX 1881 MILWAUKEE, WI 53201 USA

Abstract

Heyting’s intuitionistic predicate logic describes very general regularities observed in constructive mathematics. The intended meaning of the logical constants is clarified through Heyting’s proof interpretation. A re-evaluation of proof interpretation and predicate logic leads to the new constructive Basic logic properly contained in intuitionistic logic. We develop logic and interpretation simultaneously by an axiomatic approach. Basic logic appears to be complete. A brief historical overview shows that our insights are not all new.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alizadeh, M., Ardeshir, M., and Ruitenburg, W., Boolean algebras in Visser algebras . Notre Dame Journal of Formal Logic , vol. 57 (2016), pp. 141150.CrossRefGoogle Scholar
Ardeshir, M. and Ruitenburg, W., Basic propositional calculus I . Mathematical Logic Quarterly , vol. 44 (1998), pp. 317343.CrossRefGoogle Scholar
Ardeshir, M. and Vaezian, V., A unification of the basic logics of Sambin and Visser . Logic Journal of the IGPL, Interest Group in Pure and Applied Logics , vol. 20 (2012), no. 6, pp. 12021213.Google Scholar
van Atten, M., Predicativity and parametric polymorphism of Brouwerian implication, preprint, 2018, arXiv:1710.07704.Google Scholar
van Atten, M. and Sundholm, G., L.E.J. Brouwer’s ‘Unreliability of the logical principles’: A new translation, with an introduction . History and Philosophy of Logic , vol. 38 (2017), no. 1, pp. 2447.CrossRefGoogle Scholar
Bishop, E., Foundations of Constructive Analysis , McGraw-Hill, New York, 1967.Google Scholar
Bishop, E., Mathematics as a numerical language , Intuitionism and Proof Theory (A. Kino, J. Myhill, and R. E. Vesley, editors), Studies in Logic and the Foundations of Mathematics, 58, North–Holland, Amsterdam, 1970, pp. 5371.Google Scholar
Bridges, D. and Richman, F., Varieties of Constructive Mathematics , London Mathematical Society Lecture Note Series, 97, Cambridge University Press, Cambridge, 1987.CrossRefGoogle Scholar
Brouwer, L. E. J., Over de Grondslagen der Wiskunde , Ph.D. thesis, University of Amsterdam, 1907.Google Scholar
Brouwer, L. E. J., Intuïtionistische splitsing van mathematische grondbegrippen . Nederlandse Akademie van Wetenschappen, Verslagen , vol. 32 (1923), pp. 877880.Google Scholar
Brouwer, L. E. J., Intuitionistische Zerlegung mathematischer Grundbegriffe . Jahresbericht der Deutschen Mathematiker–Vereinigung , vol. 33 (1924), pp. 251256.Google Scholar
van Dalen, D., Braucht die konstruktive Mathematik Grundlagen? Jahresbericht der Deutschen Mathematiker–Vereinigung , vol. 84 (1982), pp. 5778.Google Scholar
Dean, W. and Kurokawa, H., Kreisel’s theory of constructions, the Kreisel–Goodman paradox, and the second clause , Advances in Proof-Theoretic Semantics (T. Piecha and P. Schroeder-Heister, editors), Trends in Logic, 43, Springer International, Cham, 2015, pp. 2763.Google Scholar
Dummett, M., Elements of Intuitionism , second ed., Oxford Logic Guides, 39, Clarendon Press, Oxford, 2000.CrossRefGoogle Scholar
Freyd, P., Aspects of Topoi . Bulletin of the Australian Mathematical Society , vol. 7 (1972), pp. 176 and 467–480.CrossRefGoogle Scholar
Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes . Dialectica , vol. 12 (1958), pp. 280287.CrossRefGoogle Scholar
Gödel, K., On an extension of finitary mathematics which has not yet been used , Collected Works, Volume II, Publications 1938–1974 , Oxford University Press, New York, 1990, pp. 271280.Google Scholar
Gödel, K., Collected Works, Volume II, Publications 1938–1974 , Oxford University Press, New York, 1990.Google Scholar
Gödel, K., The present situation in the foundations of mathematics , Collected Works, Volume III, Unpublished Essays and Lectures , Oxford University Press, New York, 1995, pp. 4553.Google Scholar
Gödel, K., Lecture at Zilsel’s , Collected Works, Volume III, Unpublished Essays and Lectures , Oxford University Press, New York, 1995, pp. 87113.Google Scholar
Gödel, K., Collected Works, Volume III, Unpublished Essays and Lectures , Oxford University Press, New York, 1995.Google Scholar
Goodman, N. D., A theory of constructions equivalent to arithmetic , Intuitionism and Proof Theory (A. Kino, J. Myhill, and R. E. Vesley, editors), Studies in Logic and the Foundations of Mathematics, 58, North–Holland, Amsterdam, 1970, pp. 101120.Google Scholar
Hansen, C. S., Brouwer’s conception of truth . Philosophia Mathematica (3) , vol. 24 (2016), no. 3, pp. 379400.CrossRefGoogle Scholar
van Heijenoort, J., From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931 , Harvard University Press, Cambridge, MA, 1967.Google Scholar
Heyting, A., Die formalen Regeln der intuitionistischen Logik , Sitzungsberichte der preussischen Akademie von Wissenschaften , Physikalisch-mathematische Klasse, 1930, pp. 4256.Google Scholar
Heyting, A., Die formalen Regeln der intuitionistischen Mathematik II , Sitzungsberichte der preussischen Akademie von Wissenschaften , Physikalisch-mathematische Klasse, 1930, pp. 5771.Google Scholar
Heyting, A., Die formalen Regeln der intuitionistischen Mathematik III , Sitzungsberichte der preussischen Akademie von Wissenschaften , Physikalisch-mathematische Klasse, 1930, pp. 158169.Google Scholar
Heyting, A., Die intuitionistische Grundlegung der Mathematik . Erkenntnis , vol. 2 (1931), pp. 106115.CrossRefGoogle Scholar
Heyting, A., Mathematische Grundlagenforschung – Intuitionismus , Springer-Verlag, Berlin, 1934.Google Scholar
Heyting, A., Intuitionism, an Introduction , Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1956.Google Scholar
Heyting, A., Intuitionism in mathematics , Philosophy in the Mid-Century. A Survey (R. Klibansky, editor), La Nuova Italia editrice, Firenze, 1958, pp. 101115.Google Scholar
Heyting, A., Intuitionism, an Introduction , Third revised edition, Studies in Logic and the Foundations of Mathematics, vol. 34, North-Holland, Amsterdam, 1971.Google Scholar
Heyting, A. (editor), L.E.J. Brouwer Collected Works Volume 1, Philosophy and Foundations of Mathematics , North-Holland, Amsterdam, 1975.Google Scholar
Heyting, A., History of the foundations of mathematics . Nieuw Archief voor Wiskunde, 3rd series , vol. 26 (1978), no. 1, pp. 121.Google Scholar
Howard, W. A., The formulae-as-types notion of construction , To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J. Seldin and J. R. Hindley, editors), Academic Press, New York, 1980, pp. 480490. (Original manuscript, 1969.)Google Scholar
Johnstone, P. T., Topos Theory , L.M.S. Monographs, Academic Press, London, 1977.Google Scholar
Kolmogoroff, A. N., Zur Deutung der intuitionistischen Logik . Mathematische Zeitschrift , vol. 35 (1932), pp. 5865. [English translation: On the Interpretation of Inuitionistic Logic, 52, pp. 328–334].CrossRefGoogle Scholar
Kolmogorov, A. N., O printsipe tertium non datur . Mathematičeskiǐ Sbornik , vol. 32 (1925), pp. 646667. [English translation: On the principle of excluded middle, 24, pp. 414–437].Google Scholar
Kreinovich, V., Constructive mathematics in St. Petersburg, Russia: A (somewhat subjective) view from within , Modern Logic 1850–1950, East and West , Studies in Universal Logic (F. F. Abeles and M. E. Fuller, editors), Birkhäuser, Springer, Cham, 2016, pp. 205236.CrossRefGoogle Scholar
Kreisel, G., Foundations of intuitionistic logic , Logic, Methodology, and Philosophy of Science (E. Nagel, P. Suppes, and A. Tarski, editors), Stanford University Press, Stanford, 1962, pp. 198210.Google Scholar
Kreisel, G., Mathematical logic , Lectures on Modern Mathematics III (T. L. Saaty, editor), Wiley, New York, 1965, pp. 95195.Google Scholar
Kushner, B. A., The constructive mathematics of A. A. Markov . American Mathematical Monthly , vol. 113 (2006), no. 6, pp. 559566.CrossRefGoogle Scholar
Lawvere, F. W., An elementary theory of the category of sets . Proceedings of the National Academy of Sciences , vol. 52 (1964), pp. 15061511.CrossRefGoogle ScholarPubMed
Martin-Löf, P., Intuitionistic Type Theory , Studies in Proof Theory, Lecture Notes 1, Bibliopolis, Derry New Hampshire, 1984.Google Scholar
Martin-Löf, P., An intuitionistic theory of types , Twenty-Five Years of Constructive Type Theory (G. Sambin and J. M. Smith, editors), Oxford Logic Guides, 36, Oxford University Press, New York, 1998, pp. 127172.Google Scholar
Mines, R., Richman, F. and Ruitenburg, W., A Course in Constructive Algebra , Universitext, Springer-Verlag, New York, 1988.CrossRefGoogle Scholar
Ruitenburg, W., The unintended interpretations of intuitionistic logic , Perspectives on the History of Mathematical Logic (T. Drucker, editor), Birkhäuser, Boston, 1991, pp. 134160.Google Scholar
Ruitenburg, W., Basic logic and Fregean set theory , Dirk van Dalen Festschrift (H. Barendregt, M. Bezem, and J. W. Klop, editors), Quaestiones Infinitae, 5, Department of Philosophy, Utrecht University, Utrecht, 1993, pp. 121142.Google Scholar
Ruitenburg, W., Basic predicate calculus . Notre Dame Journal of Formal Logic , vol. 39 (1998), no. 1, pp. 1846.CrossRefGoogle Scholar
Sambin, G., Battilotti, G., and Faggian, C., Basic logic: Reflection, symmetry, visibility . The Journal of Symbolic Logic , vol. 65 (2000), pp. 9791013.CrossRefGoogle Scholar
Scott, D. S., Identity and existence in intuitionistic logic , Applications of Sheaves (M. Fourman, C. Mulvey, and D. Scott, editors), Lecture Notes in Mathematics, 753, Springer-Verlag, Berlin, 1979, pp. 660696.CrossRefGoogle Scholar
Smoryński, C., Self-Reference and Modal Logic , Universitext, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
Tait, W. W., Gödel’s interpretation of intuitionism . Philosophia Mathematica , vol. 14 (2006), no. 2, pp. 208228.CrossRefGoogle Scholar
Troelstra, A. S., Aspects of constructive mathematics . Handbook of Mathematical Logic (J. Barwise, editor), Studies in Logic and the Foundations of Mathematics, 90, North-Holland, Amsterdam, 1977, pp. 9731052.Google Scholar
Troelstra, A. S., Arend Heyting and his contribution to intuitionism . Nieuw Archief voor Wiskunde, 3rd series , vol. 29 (1981), no. 1, pp. 123.Google Scholar
Troelstra, A. S. and van Dalen, D., Constructivism in Mathematics, an Introduction, vol. 1, Studies in Logic and the Foundations of Mathematics, 121, North-Holland, Amsterdam, 1988.Google Scholar
Visser, A., A propositional logic with explicit fixed points . Studia Logica , vol. 40 (1981), pp. 155175.CrossRefGoogle Scholar
Whitehead, A. N. and Russell, B., Principia Mathematica , vols. I, II, III , second ed., Cambridge University Press, Cambridge, 1925–1927.Google Scholar