Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-08-31T14:55:33.324Z Has data issue: false hasContentIssue false

Optimising reference gene selection in unravelling Begomovirus-induced autophagy expression in Bemisia tabaci (Hemiptera: Aleyrodidae)

Published online by Cambridge University Press:  27 August 2025

N.R. Prasannakumar*
Affiliation:
Division of Crop Protection, ICAR-Indian Institute for Horticultural Research, Bengaluru, KA, India
K. Ashok
Affiliation:
Division of Basic Sciences, ICAR-Indian Institute for Horticultural Research, Bengaluru, KA, India Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
N. Jyothi
Affiliation:
Division of Crop Protection, ICAR-Indian Institute for Horticultural Research, Bengaluru, KA, India
V. Venkataravanappa
Affiliation:
Division of Crop Protection, ICAR-Indian Institute for Horticultural Research, Bengaluru, KA, India
R. Asokan
Affiliation:
Division of Basic Sciences, ICAR-Indian Institute for Horticultural Research, Bengaluru, KA, India
*
Corresponding author: N.R. Prasannakumar; Email: prasannaent@gmail.com

Abstract

Gene expression can be quantified using the sensitive technique of quantitative reverse transcription real-time polymerase chain reaction. Inter-sample variances can be minimised through normalisation with an appropriate reference gene. Bemisia tabaci, a significant insect vector of the Begomovirus family, transmits the Tomato Leaf Curl Bangalore Virus, for which there is a dearth of information regarding appropriate reference genes for autophagy. The viral load surpasses the vector’s capacity when autophagy is activated, which is also detrimental to whiteflies, particularly concerning virus translocation. To mitigate this vector using a double-stranded RNA approach, a precise measurement of gene silencing is required. For this investigation, normalisation of housekeeping or internal control genes is necessary. The present work utilised software tools such as geNorm, NormFinder, and BestKeeper to assess the suitability of five reference genes, namely, α-tubulin, β-tubulin, elongation factor, actin, and sucrose synthase, for gene expression studies in viruliferous and non-viruliferous B. tabaci. The analysis of the data showed that β-tubulin, which exhibits more stable expression, is the best-ranked reference gene. Furthermore, the reference genes were verified using the target gene expression of atg3 (an autophagy gene). The current findings enable precise measurement of gene expression in begomovirus-induced autophagy conditions of B. tabaci.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

#

Authors with equal contribution

References

Abubakar, M, Koul, B, Chandrashekar, K, Raut, A and Yadav, D (2022) Whitefly (Bemisia tabaci) Management (WFM) Strategies for sustainable agriculture: a review. Agriculture 12, 1317. doi:10.3390/agriculture12091317CrossRefGoogle Scholar
Ahmed, U, Xie, Q, Shi, X and Zheng, B (2022) Development of reference genes for horticultural plants. Critical Reviews Plant Science 41(3), 190208. doi:10.1080/07352689.2022.2084227CrossRefGoogle Scholar
Aithal, MG and Rajeswari, N (2015) Validation of housekeeping genes for gene expression analysis in glioblastoma using quantitative real-time polymerase chain reaction. Brain Tumor Research and Treatment 3(1), 2429. doi:10.14791/btrt.2015.3.1.24CrossRefGoogle ScholarPubMed
Andersen, CL, Jensen, JL and Ørntoft, TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64(15), 52455250. doi:10.1158/0008-5472.CAN-04-0496CrossRefGoogle Scholar
Chandra, SG, Asokan, R, Manamohana, M, Kumar, NKK and Sita, T (2014) Evaluation of reference genes for quantitative real-time PCR normalization in cotton bollworm Helicoverpa armigera. Molecular Biology 48(6), 813822. doi:10.1134/S0026893314060156CrossRefGoogle Scholar
Christiaens, O, Niu, J and Taning, CNT (2020) RNAi in insects: A revolution in fundamental research and pest control applications. Insects 11, 415. doi:10.3390/insects11070415CrossRefGoogle Scholar
Costa, TM, Inoue-Nagata, AK, Vidal, AH, Ribeiro, SG and Nagata, T (2020) The recombinant isolate of cucurbit aphid-borne yellows virus from Brazil is a polerovirus transmitted by whiteflies. Plant Pathology 69, 10421050. doi:10.1111/ppa.13186CrossRefGoogle Scholar
Dong, Z, Zhan, B and Li, S (2022) Selection and validation of reference genes for gene expression studies using quantitative real-time PCR in Prunus necrotic ringspot virus-infected Cucumis sativus. Viruses 14(6), 1269. doi:10.3390/v14061269CrossRefGoogle Scholar
Gangwar, RK and Charu, G (2018) Lifecycle, distribution, nature of damage and economic importance of whitefly, Bemisia tabaci (Gennadius). Acta Scientific Agriculture 2, 3639.Google Scholar
Gazara, RK, Cardoso, C, Bellieny-Rabelo, D, Ferreira, C, Terra, WR and Venancio, TM (2017) De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 627, 8593. doi:10.1016/j.gene.2017.06.008CrossRefGoogle ScholarPubMed
Ghosh, S, Kanakala, S, Lebedev, G, Kontsedalov, S, Silverman, D, Alon, T, Mor, N, Sela, N, Luria, N, Dombrovsky, A, Mawassi, M, Haviv, S, Czosnek, H and Ghanim, M (2019) Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaci. Journal of Virology 93, e0048819. doi:10.1128/JVI.00488-19CrossRefGoogle ScholarPubMed
Gilbertson, RL, Batuman, O, Webster, CG and Adkins, S (2015) Role of the insect vectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review Virology 2, 6793. doi:10.1146/annurev-virology-031413-085410CrossRefGoogle Scholar
Irie, N, Warita, K, Tashiro, J, Zhou, Y, Ishikawa, T, Oltvai, ZN and Warita, T (2023) Expression of housekeeping genes varies depending on mevalonate pathway inhibition in cancer cells. Heliyon E18017. doi:10.1016/j.heliyon.2023.e18017CrossRefGoogle ScholarPubMed
Kanakala, S and Ghanim, M (2019) Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS One 14(3), e0213946. doi:10.1371/journal.pone.0213946CrossRefGoogle ScholarPubMed
Kohsler, M, Leitsch, D, Müller, N and Walochnik, J (2020) Validation of reference genes for the normalization of RT-qPCR gene expression in Acanthamoeba spp. Scientific Reports 10, 10362. doi:10.1038/s41598-020-67035-0CrossRefGoogle ScholarPubMed
Kozera, B and Rapacz, M (2013) Reference genes in real-time PCR. Journal of Applied Genetics 54, 391406. doi:10.1007/s13353-013-0173-xCrossRefGoogle ScholarPubMed
Liu, XC and Li, ZX (2019) Screening for stable internal reference genes for quantitative PCR analysis of Wolbachia-host interactions in whitefly Bemisia tabaci (Homoptera: Aleyrodidae). European Journal of Entomology 116, 402412. doi:10.14411/eje.2019.041CrossRefGoogle Scholar
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4), 402408. doi:10.1006/meth.2001.1262CrossRefGoogle Scholar
Moin, M, Saha, A, Bakshi, A, Divya, D, Madhav, MS and Kirti, PB (2021) Study on transcriptional responses and identification of ribosomal protein genes for potential resistance against brown planthopper and gall midge pests in rice. Current Genomics 22(2), 98110. doi:10.2174/1389202922666210219113220CrossRefGoogle Scholar
Naveed, H, Islam, W, Jafir, M, Andoh, V, Chen, L and Chen, K (2023) A review of interactions between plants and whitefly-transmitted begomoviruses. Plants 12, 3677. doi:10.3390/plants12213677CrossRefGoogle ScholarPubMed
Pfaffl, MW, Tichopad, A, Prgomet, C and Neuvians, TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letter 26, 509515. doi:10.1023/B:BILE.0000019559.84305.47CrossRefGoogle ScholarPubMed
Pinheiro, DH and Siegfried, BD (2020) Selection of reference genes for normalization of RT-qPCR data in gene expression studies in Anthonomus eugenii Cano (Coleoptera: Curculionidae). Scientific Reports 10, 5070. doi:10.1038/s41598-020-61739-zCrossRefGoogle ScholarPubMed
Ponton, F, Chapuis, MP, Pernice, M, Sword, GA and Simpson, SJ (2011) Evaluation of potential reference genes for reverse transcription–qPCR studies of physiological responses in Drosophila melanogaster. Journal of Insect Physiology 57, 840850. doi:10.1016/j.jinsphys.2011.03.014CrossRefGoogle ScholarPubMed
Prasannakumar, NR and Maruthi, MN (2021) Understanding the interactions among the crop plants, a virus, insect vector whiteflies and their endosymbionts. Phytoparasitica 49, 739750. doi:10.1007/s12600-021-00905-zCrossRefGoogle Scholar
Qureshi, MA, Lal, A, Nawaz-Ul-Rehman, MS, Vo, T.T.B., Sanjaya, G.N.P.W., Ho, P.T., Nattanong, B., Kil, E.J., Jahan, S.M.H., Lee, K.Y. and Tsai, C.W. (2022)Emergence of Asian endemic begomoviruses as a pandemic threat. Frontiers in Plant Science 13, 970941. doi:10.3389/fpls.2022.970941.CrossRefGoogle ScholarPubMed
Shakeel, M, Rodriguez, A, Tahir, UB and Jin, F (2018) Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects. Biotechnology Letter 40, 227236. doi:10.1007/s10529-017-2465-4CrossRefGoogle ScholarPubMed
Turabelidze, A, Guo, BSS, Luisa, A and DiPietro, DDS (2010) Importance of housekeeping gene selection for accurate RT-qPCR in a wound healing model. Wound Repair and Regeneration 18(5), 460466. doi:10.1111/j.1524-475X.2010.00611.xCrossRefGoogle Scholar
Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A and Speleman, F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7), 112. doi:10.1186/gb-2002-3-7-research0034CrossRefGoogle Scholar
Verburg, SG, Lelievre, RM, Westerveld, MJ, Inkol, JM, Sun, YL and Workenhe, ST (2022) Viral-mediated activation and inhibition of programmed cell death. PLoS Pathogens 18(8), e1010718. doi:10.1371/journal.ppat.1010718CrossRefGoogle ScholarPubMed
Wang, S, Guo, H, Salzman, KZ, Ge, F and Sun, Y (2022) PEBP balances apoptosis and autophagy in whitefly upon arbovirus infection. Nature Communications 13, 846. doi:10.1038/s41467-022-28500-8CrossRefGoogle Scholar
Wu, W, Luo, X and Ren, M (2022) Clearance or hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Frontiers in Cellular and Infection Microbiology 11, 786348. doi:10.3389/fcimb.2021.786348CrossRefGoogle ScholarPubMed
Yang, Q, Li, Z, Cao, J, Zhang, S, Zhang, H, Wu, X, Zhang, Q and Liu, X (2014) Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS One 9(6), e98164. doi:10.1371/journal.pone.0098164CrossRefGoogle ScholarPubMed
Zhang, S, An, S, Li, Z, Wu, F, Yang, Q, Liu, Y, Cao, J, Zhang, H, Zhang, Q and Liu, X (2015) Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 555(2), 393402. doi:10.1016/j.gene.2014.11.038CrossRefGoogle ScholarPubMed
Supplementary material: File

Prasannakumar et al. supplementary material

Prasannakumar et al. supplementary material
Download Prasannakumar et al. supplementary material(File)
File 341.9 KB