Hostname: page-component-7dd5485656-wjfd9 Total loading time: 0 Render date: 2025-10-28T18:05:35.544Z Has data issue: false hasContentIssue false

Toward a revised theory of general intelligence: Further examination of fluid cognitive abilities as unique aspects of human cognition

Published online by Cambridge University Press:  05 April 2006

Clancy Blair*
Affiliation:
Human Development and Family Studies, Pennsylvania State University, University Park, PA 16802-6504

Abstract

Primary issues raised by the commentaries on the target article relate to (1) the need to differentiate distinct but overlapping aspects of fluid cognition, and (2) the implications that this differentiation may hold for conceptions of general intelligence. In response, I outline several issues facing researchers concerned with differentiation of human cognitive abilities and suggest that a revised and expanded theory of intelligence is needed to accommodate an increasingly diverse and varied empirical base.

Information

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ackerman, P. L., Beier, M. E. & Boyle, M. O. (2005) Working memory and intelligence: The same or different constructs? Psychological Bulletin 131:30-60. [rCB, RPH]10.1037/0033-2909.131.1.30CrossRefGoogle ScholarPubMed
Allman, J. M., Hakeem, A., Erwin, J., Nimchinsky, E. & Hof, P. (2001) The anterior cingulate cortex: The evolution of an interface between emotion and cognition. Annals of the New York Academy of Sciences 935:107-17. [aCB]10.1111/j.1749-6632.2001.tb03476.xCrossRefGoogle ScholarPubMed
Amminger, G. P., Schlogelhofer, M., Lehner, T., Looser Ott, S., Friedrich, M. H. & Aschauer, H. N. (2000) Premorbid performance IQ deficit in schizophrenia. Acta Psychiatrica Scandinavica 102:414-22. [aCB]10.1034/j.1600-0447.2000.102006414.xCrossRefGoogle ScholarPubMed
Anderson, M. (2000) An unassailable defense of g but a siren-song for theories of intelligence. Psycoloquy, 00.11.013.intelligence-g-factor.28.anderson. ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/2000.volume.11/. [MA]Google Scholar
Anderson, M. (2001) Annotation: Conceptions of intelligence. Journal of Child Psychology and Psychiatry 42(3):287-98. ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/ 2000.volume.11/. [MA, RMF]Google ScholarPubMed
Anderson, M. (2005) Cortex forum on the concept of general in neuropsychology. Cortex 41:99-100. Available at: http://www.cortex-online.org/cortex.asp?action— toArticles&folderlD—148. [MA]10.1016/S0010-9452(08)70883-9CrossRefGoogle ScholarPubMed
Ando, J., Ono, Y. & Wright, M. J. (2001) Genetic structure of spatial and verbal working memory. Behavior Genetics 31:615-24. [aCB]10.1023/A:1013353613591CrossRefGoogle ScholarPubMed
Ashton, M. C., Lee, K. & Vernon, P. A. (2001) Which is the real general intelligence? A reply to Robinson (1999). Personality and Individual Differences 1353-59. [aCB]10.1016/S0191-8869(00)00117-3CrossRefGoogle Scholar
Bachevalier, J., Alvarado, M. C. & Malkova, L. (1999) Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood. Biological Psychiatry 46:329-39. [aCB]CrossRefGoogle ScholarPubMed
Baddeley, A. (1986) Working memory. Oxford Psychology Series, No. 11. Oxford University Press/Clarendon Press. [arCB, NC]Google ScholarPubMed
Baddeley, A. (2000) The episodic buffer: A new component of working memory? Trends in Cognitive Sciences 4:417-23. [NC]10.1016/S1364-6613(00)01538-2CrossRefGoogle ScholarPubMed
Baddeley, A., Chincotta, D. & Adlam, A. (2001) Working memory and the control of action: Evidence from task switching. Journal of Experimental Psychology: General 130:641-57. [KES]10.1037/0096-3445.130.4.641CrossRefGoogle ScholarPubMed
Balkenius, C. (2000) Attention, habituation and conditioning: Toward a computational model. Cognitive Science Quarterly 1(2):171-214. [EST]Google Scholar
Barkeley, R. A. (1997) Behavioral inhibition, sustained attention, and executive function: Constructing a unifying theory of ADHD. Psychological Bulletin 121:65-94. [aCB]10.1037/0033-2909.121.1.65CrossRefGoogle Scholar
Barrett, P. (2000) Intelligence, psychometrics, g, and mental abilities: Quantitative methodology dressed as science. Psycoloquy, 00.11.046.intelligence-g-fac- tor.45.barrett. ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/ 2000.volume.11/. [MA]Google Scholar
Bechara, A. (2004) The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition 55:30-40. [aCB]10.1016/j.bandc.2003.04.001CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Damasio, A. & Lee, G. P. (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience 19:5473-81. [aCB]10.1523/JNEUROSCI.19-13-05473.1999CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. (1996) Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex 6:215-25. [aCB]10.1093/cercor/6.2.215CrossRefGoogle ScholarPubMed
Bedwell, J. S., Keller, B., Smith, A. K., Hamburger, S., Kumra, S. & Rapoport, J. L. (1999) Why does postpsychotic IQ decline in childhood onset schizophrenia? American Journal of Psychiatry 156:1996-97. [aCB]10.1176/ajp.156.12.1996CrossRefGoogle ScholarPubMed
Benga, O. (2001) Sociocognitive control of emotions: The case of early attachment. In: Development and cognition, ed. Benga, O. & Miclea, M.. Editura Presa Universitara Clujeana. [OB]Google Scholar
Benga, O. (2004) Development of social cognition in children [in Romanian]. ASCR (Asociatia Romana de Stiinte Cognitive, Publishing House of the Romanian Association of Cognitive Sciences). [OB]Google Scholar
Berlin, L. (2003) The role of inhibitory control and executive functioning in hyperactivity/ADHD: Comprehensive summaries of Uppsala dissertations from the Faculty of Social Sciences 120. Acta Universitatis Upsaliensis. [aCB]Google Scholar
Bertolino, A., Roffman, J. L., Lipska, B. K., van Gelderen, P., Olson, A. & Weinberger, D. R. (2002) Reduced N-acteylaspartate in prefrontal cortex of adult rats with neonatal hippocampal damage. Cerebral Cortex 12:983-90. [aCB]Google Scholar
Bertolino, A., Saunders, R. C., Mattay, V. S., Bachevalier, J., Frank, J. A. & Weinberger, D. R. (1997) Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: A proton magnetic resonance spectroscopic imaging study. Cerebral Cortex 7:740-48. [aCB]10.1093/cercor/7.8.740CrossRefGoogle ScholarPubMed
Blair, C. (2002) School readiness: Integrating cognition and emotion in a neurobiological conceptualization of child functioning at school entry. American Psychologist 57:111-27. [arCB]10.1037/0003-066X.57.2.111CrossRefGoogle Scholar
Blair, C., Gamson, E., Thorne, S. & Baker, D. (2005a) Rising mean IQ: Cognitive demand of mathematics education for young children, population exposure to formal schooling, and the neurobiology of the prefrontal cortex. Intelligence 33:93-106. [MV]10.1016/j.intell.2004.07.008CrossRefGoogle Scholar
Blair, C., Granger, D. & Razza, R. P. (2005b) Cortisol reactivity is positively related to executive function in preschool children attending Head Start. Child Development 76:554-67. [rCB]10.1111/j.1467-8624.2005.00863.xCrossRefGoogle Scholar
Blair, C., Peters, R. & Granger, D. (2004) Physiological and neuropsychological correlates of approach/withdrawal behavior in preschool: Further examination of the BIS/BAS scales for young children. Developmental Psychobiology 45:113-24. [rCB]10.1002/dev.20022CrossRefGoogle ScholarPubMed
Borsboom, D., Mellenbergh, G. J. & van Heerden, J. (2003) The theoretical status of latent variables. Psychological Review 110(2):203-19. [DPB]10.1037/0033-295X.110.2.203CrossRefGoogle ScholarPubMed
Borsboom, D., Mellenbergh, G. J. & van Heerden, J. (2004) The concept of validity. Psychological Review 111(4):1061-71. [DPB]10.1037/0033-295X.111.4.1061CrossRefGoogle ScholarPubMed
Braun, K., Lange, E., Metzger, M. & Poeggel, G. (1999) Maternal separation followed by early social deprivation affects the development of monoaminergic fiber systems in the medial prefrontal cortex of Octodon degus. Neuroscience 95:309-18. [aCB]10.1016/S0306-4522(99)00420-0CrossRefGoogle Scholar
Braver, T. S. & Barch, D. M. (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience and Biobehavioral Reviews 26:809-17. [aCB, NAZ]10.1016/S0149-7634(02)00067-2CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M. & Cohen, J. D. (1999) Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry 46:312-28. [aCB]CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, R. E. & Petersen, S. E. (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage 14:48-59. [aCB]10.1006/nimg.2001.0791CrossRefGoogle ScholarPubMed
Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E. & Noll, D. C. (1997) A parametric study of prefrontal cortex involvement in human working memory. NeuroImage 5:49-62. [aCB]10.1006/nimg.1996.0247CrossRefGoogle ScholarPubMed
Bredy, T. W., Humpartzoomian, R. A., Cain, D. P. & Meany, M. J. (2003) Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 188:571-76. [aCB]10.1016/S0306-4522(02)00918-1CrossRefGoogle Scholar
Breitenstein, C., Jansen, A., Deppe, M., Foerster, A. F., Sommer, J., Wolbers, T. & Knecht, S. (2005) Hippocampus activity differentiates good from poor learners of a novel lexicon. Neuroimage 25:958-68. [MW]10.1016/j.neuroimage.2004.12.019CrossRefGoogle ScholarPubMed
Brody, N. (1992) Intelligence, 2nd edition. Academic Press. [DG]Google Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. (1979) Cognitive deficits caused by regional depletion of dopamine in the prefrontal cortex of rhesus monkey. Science 205:929-32. [aCB]10.1126/science.112679CrossRefGoogle Scholar
Buckner, R. L. (2004) Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 44:195-208. [rCB]10.1016/j.neuron.2004.09.006CrossRefGoogle Scholar
Buckner, R. L. & Wheeler, M. E. (2001) The cognitive neuroscience of remembering. Nature Reviews: Neuroscience 2:311-14. [rCB]10.1038/35090048CrossRefGoogle ScholarPubMed
Bull, R. & Scerif, G. (2001) Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology 19:273-93. [aCB]CrossRefGoogle ScholarPubMed
Bunce, D. (2003) Cognitive support at encoding attenuates age differences in recollective experience among adults of lower frontal lobe function. Neuropsychology 17(3):353-61. [NAZ]10.1037/0894-4105.17.3.353CrossRefGoogle ScholarPubMed
Burbaud, P., Degreze, P., Lafon, P., Franconi, J., Bouligand, B., Bioulac, B., Caille, J. & Allard, M. (1995) Lateralization of prefrontal activation during internal mental calculation: A functional magnetic imaging study. Journal of Neurophysiology 74:2194-200. [aCB]10.1152/jn.1995.74.5.2194CrossRefGoogle Scholar
Burgess, G. C., Gray, J. R., Conway, A. R. A. & Braver, T. S. (2005) Relationships among fluid intelligence, working memory span, and brain activity during high-interference trials. Poster presented at the 12th Annual Meeting of the Cognitive Neuroscience Society, New York, NY, April 2005. [GCB]Google Scholar
Burgess, N., Becker, S., King, J. A. & O'Keefe, J. (2001) Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society of London B 356:1493-503. [EST]10.1098/rstb.2001.0948CrossRefGoogle ScholarPubMed
Bush, G., Luu, P. & Posner, M. I. (2000) Cognitive and emotional influences in the anterior cingulate cortex. Trends in Cognitive Sciences 4:215-22. [OB, aCB]CrossRefGoogle Scholar
Cabeza, R., Anderson, N. D., Locantore, J. K. & McIntosh, A. R. (2002) Aging gracefully: Compensatory brain activity in high performing older adults. Neuroimage 17:1394-402. [aCB]10.1006/nimg.2002.1280CrossRefGoogle ScholarPubMed
Caldji, C., Diorio, J. & Meaney, M. J. (2000a) Variations in maternal care in infancy regulate the development of stress reactivity. Biological Psychiatry 48:1164-74. [aCB]10.1016/S0006-3223(00)01084-2CrossRefGoogle Scholar
Caldji, C., Francis, D., Sharma, S., Plotsky, P. M. & Meaney, M. J. (2000b) The effects of early rearing environment on the development of GABAa and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22:219-29. [aCB]10.1016/S0893-133X(99)00110-4CrossRefGoogle Scholar
Callicott, J., Matay, V., Bertolino, A., Finn, K., Coppola, R., Frank, J., Goldberg, T. & Weinberger, D. (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex 9:20-26. [aCB]10.1093/cercor/9.1.20CrossRefGoogle ScholarPubMed
Carlson, S. M. (2003) Executive function in context: Development, measurement, theory and experience. Monographs of the Society for Research in Child Development 68:138-51. [RMF]10.1111/j.1540-5834.2003.06803012.xCrossRefGoogle ScholarPubMed
Carlson, S. M. & Moses, L. J. (2001) Individual differences in inhibitory control and children's theory of mind. Child Development 72:1032-53. [OB]10.1111/1467-8624.00333CrossRefGoogle ScholarPubMed
Carlson, S. M., Mandell, D. J. & Williams, L. (2004) Executive function and theory of mind: Stability and prediction from ages 2 to 3. Developmental Psychology 40:1105-22. [RMF]10.1037/0012-1649.40.6.1105CrossRefGoogle ScholarPubMed
Carpenter, P. A., Just, M. A. & Reichle, E. D. (2000) Working memory and executive function: Evidence from neuroimaging. Current Opinion in Neurobiology 10:195-99. [aCB]10.1016/S0959-4388(00)00074-XCrossRefGoogle ScholarPubMed
Carpenter, P. A., Just, M. A. & Shell, P. (1990) What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review 97:404-31. [aCB]10.1037/0033-295X.97.3.404CrossRefGoogle Scholar
Carroll, J. B. (1993) Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press. [DPB, aCB, WJ, KES, MV]10.1017/CBO9780511571312CrossRefGoogle Scholar
Carroll, J. B. (1996) A three-stratum theory of intelligence: Spearman's contribution. In: Human abilities: Their nature and measurement, ed. Dennis, I. & Tapsfield, P., pp. 1-18. Erlbaum. [aCB]Google Scholar
Carroll, J. B. (2003) The higher-stratum structure of cognitive abilities: Current evidence supports g and about ten broad factors. In: The scientific study of general intelligence: Tribute to Arthur R. Jensen, ed. Nyborg, H.. Elsevier Science/ Pergamon. [KK, MV]Google Scholar
Carruthers, P. (2002) The cognitive functions of language. Behavioral and Brain Sciences 25:657-726. [KES]10.1017/S0140525X02000122CrossRefGoogle ScholarPubMed
Caruso, J. C. (2001) Reliable component analysis of the Stanford-Binet: Fourth edition for 2- to 6-year-olds. Psychological Assessment 13:261-66. [aCB]10.1037/1040-3590.13.2.261CrossRefGoogle ScholarPubMed
Carver, C. S. & White, T. (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The bis/bas scales. Journal of Personality and Social Psychology 67:319-33. [GCB, rCB]10.1037/0022-3514.67.2.319CrossRefGoogle Scholar
Case, R. (1992) The role of the frontal lobes in the regulation of cognitive development. Brain and Cognition 20:51-73. [RMF]10.1016/0278-2626(92)90061-PCrossRefGoogle ScholarPubMed
Case, R. (1995) Capacity-based explanations of working memory growth: A brief history and reevaluation. In: Memory performance and competencies: Issues in growth and development, ed. Weinert, F. E. & Schneider, W., pp. 23-44. Erlbaum. [NC]Google Scholar
Case, R. & Mueller, M. P. (2001) Differentiation, integration, and covariance mapping as fundamental processes in cognitive and neurological growth. In: Mechanisms of cognitive development: Behavioral and neural perspectives, ed. McClelland, J. L. & Siegler, R. S., pp. 185-219. Erlbaum. [RMF]Google Scholar
Case, R., Demetriou, A., Platsidou, M. & Kazi, S. (2001) Integrating concepts and tests of intelligence from the differential and developmental traditions. Intelligence 29:307-36. [RMF]10.1016/S0160-2896(00)00057-XCrossRefGoogle Scholar
Cattell, R. B. (1943) The measurement of adult intelligence. Psychological Bulletin 40:143-93. [WJ]10.1037/h0059973CrossRefGoogle Scholar
Cattell, R. B. (1963) Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology 54:1-22. [WJ, KES]10.1037/h0046743CrossRefGoogle Scholar
Cattell, R. B. (1971) Abilities: Their structure, growth, and action. Cambridge University Press. [aCB, WJ, IVV]Google Scholar
Cattell, R. B. (1998) Where is intelligence? Some answers from the triadic theory. In: Human cognitive abilities in theory and practice, ed. McArdle, J. J. & Woodcock, R. W., pp. 29-38. Erlbaum. [KES]Google Scholar
Chambers, R. A., Moore, J., McEvoy, J. P. & Levin, E. D. (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587-94. [aCB]10.1016/S0893-133X(96)00132-7CrossRefGoogle Scholar
Clinton, S. M. & Meador-Woodruff, J. H. (2004) Thalamic dysfunction in schizophrenia: Neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophrenia Research 69:237-53. [MW]10.1016/j.schres.2003.09.017CrossRefGoogle ScholarPubMed
Cohen, J. D. & O'Reilly, R. C. (1996) A preliminary theory of the interactions between prefrontal cortex and hippocampus that contribute to planning and prospective memory. In: Prospective memory: Theory and applications, ed. Brandimonte, M., Einstein, G. & McDaniel, M., pp. 267-93. Erlbaum. [aCB]Google Scholar
Cohen, J. D. & Servan-Schreiber, D. (1992) Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review 99:45-77. [aCB]10.1037/0033-295X.99.1.45CrossRefGoogle ScholarPubMed
Cohen, J. D., Peristein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J. & Smith, E. E (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604-608. [aCB]10.1038/386604a0CrossRefGoogle ScholarPubMed
Cole, P. M., Usher, B. A. & Cargo, A. P. (1993) Cognitive risk and its association with risk for disruptive behavior disorder in preschoolers. Journal of Clinical Child Psychology 22:154-64. [rCB]10.1207/s15374424jccp2202_3CrossRefGoogle Scholar
Colom, R., Lluis-Font, J. P. & Andrés-Pueyo, A. (2005) The generational intelligence gains are caused by decreasing variance in the lower half of the distribution: Supporting evidence for the nutrition hypothesis. Intelligence 33:83-91. [MV]10.1016/j.intell.2004.07.010CrossRefGoogle Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M. & Kyllonen, P. C. (2004) Working memory is (almost) perfectly predicted by g. Intelligence 32:277-96. [DPB, aCB, RPH, KES]Google Scholar
Constanidis, C. & Wang, X. J. (2004) A neural circuit basis for spatial working memory. Neuroscientist 10:553-65. [rCB]10.1177/1073858404268742CrossRefGoogle Scholar
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J. & Minkoff, S. R. B. (2002) A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 30:163-83. [aCB]10.1016/S0160-2896(01)00096-4CrossRefGoogle Scholar
Conway, A. R. A., Kane, M. J. & Engle, R. W. (2003) Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences 7(12):547-52. [DPB, aCB, RPH, KES]10.1016/j.tics.2003.10.005CrossRefGoogle ScholarPubMed
Cosmides, L. & Tooby, J. (2000) Consider the source: The evolution of adaptations for decoupling and metarepresentation. In: Metarepresentations: A multidisciplinary perspective, ed. Sperber, D., pp. 53-115. Oxford University Press. [KES]10.1093/oso/9780195141146.003.0004CrossRefGoogle Scholar
Cowan, N. (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin 104:163-91. [NC]10.1037/0033-2909.104.2.163CrossRefGoogle ScholarPubMed
Cowan, N. (1995) Attention and memory: An integrated framework. Oxford Psychology Series, No. 26. Oxford University Press. [NC]Google Scholar
Cowan, N. (1999) An embedded-processes model of working memory. In: Models of Working Memory: Mechanisms of active maintenance and executive control, ed. Miyake, A. & Shah, P., pp. 62-101. Cambridge University Press. [NC]10.1017/CBO9781139174909.006CrossRefGoogle Scholar
Cowan, N. (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24:87-185. [NC]10.1017/S0140525X01003922CrossRefGoogle ScholarPubMed
Cowan, N., Chen, Z. & Rouder, J. N. (2004) Constant capacity in an immediate serial-recall task: A logical sequel to Miller (1956). Psychological Science 15:634-40. [NC]10.1111/j.0956-7976.2004.00732.xCrossRefGoogle Scholar
Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A. & Conway, A. R. (2005) On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology 51(1):42-100. [NC]10.1016/j.cogpsych.2004.12.001CrossRefGoogle ScholarPubMed
Craik, F. I. M., Morris, R. G. & Gick, M. L. (1990) Adult age differences in working memory. In: Neuropsychological impairments of short-term memory, ed. Vallar, G. & Shallice, T., pp. 247-67. Cambridge University Press. [IVV]10.1017/CBO9780511665547.014CrossRefGoogle Scholar
Crawford, J. R., Deary, I., Allan, K. & Gustafsson, J.-E. (1998) Evaluating competing models of the relationship between inspection time and intelligence. Intelligence 26:27-42. [aCB]10.1016/S0160-2896(99)80050-6CrossRefGoogle Scholar
Cronbach, L. J. (1957) The two disciplines of scientific psychology. American Psychologist 12:671-84. [GCB]10.1037/h0043943CrossRefGoogle Scholar
Damasio, A. R. (1985) The frontal lobes. In: Clinical neuropsychology, ed. Heilman, K. M. & Valenstein, E., 2nd edition, pp. 339-75. Oxford University Press. [IVV]Google Scholar
Damasio, A. R. (1994) Descartes’ error: Emotion, reason, and the human brain. Grosset/ Putnam. [aCB]Google Scholar
Davidson, R. J. (2002) Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry 51:68-80. [aCB]10.1016/S0006-3223(01)01328-2CrossRefGoogle ScholarPubMed
Davidson, R. J., Putnam, K. M. & Larson, C. L. (2000) Dysfunction in the neural circuitry of emotion regulation: A possible prelude to violence. Science 289:591-94. [aCB]10.1126/science.289.5479.591CrossRefGoogle ScholarPubMed
Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003) Three parietal circuits for number processing. Cognitive Neuropsychology 20:487-506. [rCB]10.1080/02643290244000239CrossRefGoogle ScholarPubMed
de Jong, P. & Das-Smaal, E. A. (1995) Attention and intelligence: The validity of the Start Counting test. Journal of Educational Psychology 87:80-92. [aCB]10.1037/0022-0663.87.1.80CrossRefGoogle Scholar
de Kloet, E. R., Oitzl, M. S. & Joels, M. (1999) Stress and cognition: Are corticosteroids good or bad guys? Trends in Neuroscience 22:422-26. [aCB]10.1016/S0166-2236(99)01438-1CrossRefGoogle ScholarPubMed
Demetriou, A. (2004) Mind, intelligence, and development: A cognitive, developmental, and differential theory of intelligence. In: Developmental change: Theories, models and measurement, ed. Demetriou, A. & Raftopoulos, A., pp. 21-73. Cambridge University Press. [AD]Google Scholar
Demetriou, A. & Andreou, M. (in preparation) Cognition, emotions, and personality: Towards an integrated model. [AD]Google Scholar
Demetriou, A. & Kazi, S. (submitted) Processing efficiency, reasoning, and self-awareness in g. [AD]Google Scholar
Dennett, D. C. (1984) Elbow room: The varieties of free will worth wanting. MIT Press. [KES]Google Scholar
Dennett, D. C. (1996) Kinds of minds: Toward an understanding of consciousness. Basic Books. [KES]Google Scholar
Diamond, A. (2002) Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In: Principles of frontal lobe function, pp. 466-503, ed. Stuss, D. & Knight, R.. Oxford University Press. [rCB]10.1093/acprof:oso/9780195134971.003.0029CrossRefGoogle Scholar
Diamond, A. & Herzberg, C. (1996) Impaired sensitivity to visual contrast in children treated early and continuously for phenylketonuria. Brian 119:523-38. [aCB]10.1093/brain/119.2.523CrossRefGoogle ScholarPubMed
Diamond, A., Prevor, M. B., Callendar, G. & Druin, D. P. (1997) Prefrontal cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, Vol. 62, No.4, Serial No. 252. [aCB]10.2307/1166208CrossRefGoogle ScholarPubMed
Dickens, W. T. & Flynn, J. R. (2001a) Great leap forward: A new theory of intelligence. New Scientist, 21 April, 2001: 44-47. [JRF]Google Scholar
Dickens, W. T. & Flynn, J. R. (2001b) Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review 108:346-69. [arCB, JRF]10.1037/0033-295X.108.2.346CrossRefGoogle Scholar
Dienes, Z. & Perner, J. (1999) A theory of implicit and explicit knowledge. Behavioral and Brain Sciences 22:735-808. [KES]10.1017/S0140525X99002186CrossRefGoogle ScholarPubMed
Diorio, D., Viau, V. & Meaney, M. J. (1993) The role of medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. Journal of Neuroscience 13:3839-47. [aCB]10.1523/JNEUROSCI.13-09-03839.1993CrossRefGoogle ScholarPubMed
Drevets, W. C. & Raichle, M. E. (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition and Emotion 12:353-85. [aCB]10.1080/026999398379646CrossRefGoogle Scholar
Duncan, J. (2001) An adaptive coding model of neural function in the prefrontal cortex. Nature Reviews: Neuroscience 2:820-29. [arCB]10.1038/35097575CrossRefGoogle Scholar
Duncan, J. (2003) Intelligence tests predict brain response to demanding task events. Nature Neuroscience 6:207-208. [rCB]10.1038/nn0303-207CrossRefGoogle ScholarPubMed
Duncan, J. & Owen, A. M. (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences 23:475-83. [rCB]10.1016/S0166-2236(00)01633-7CrossRefGoogle ScholarPubMed
Duncan, J., Burgess, P. & Emslie, H. (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33:261-68. [aCB, RPH, KES, IVV, NAZ]10.1016/0028-3932(94)00124-8CrossRefGoogle ScholarPubMed
Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. (1996) Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology 30:257-303. [KES]10.1006/cogp.1996.0008CrossRefGoogle ScholarPubMed
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. & Emslie, H. (2000) A neural basis for general intelligence. Science 289:457-60. [arCB]10.1126/science.289.5478.457CrossRefGoogle ScholarPubMed
Durstewitz, D. & Seamans, J. K. (2002) The computational role of dopamine D1 receptors in working memory. Neural Networks 15:561-72. [aCB]10.1016/S0893-6080(02)00049-7CrossRefGoogle ScholarPubMed
Edelman, G. M. (2004) Wider than the sky: The phenomenal gift of consciousness. Yale University Press. [EST]Google Scholar
Egan, M. F., Goldberg, T. E., Gscheidle, T., Weirich, M., Rawlings, R., Hyde, T. M., Bigelow, L. & Weinberger, D. R. (2001) Relative risk for cognitive impairment in siblings of patients with schizophrenia. Biological Psychiatry 50:98-107. [aCB]10.1016/S0006-3223(01)01133-7CrossRefGoogle ScholarPubMed
Elliott, C. D. (1990) Differential ability scales. Psychological Corporation. [JCK]Google Scholar
Embretson, S. (1995) The role of working memory capacity and general control processing in intelligence. Intelligence 20:169-89. [aCB]10.1016/0160-2896(95)90031-4CrossRefGoogle Scholar
Engle, R. W. (2002) Working memory capacity as executive attention. Current Directions in Psychological Science 11:19-23. [rCB, KES]10.1111/1467-8721.00160CrossRefGoogle Scholar
Engle, R. W., Kane, M. J. & Tuholiski, S. W. (1999a) Individual difference in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and function of the prefrontal cortex. In: Models of working memory: Mechanisms of active maintenance and executive control, ed. Miyake, A. & Shah, P., pp. 102-34. Cambridge University Press. [DPB]10.1017/CBO9781139174909.007CrossRefGoogle Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. (1999b) Working memory, short-term memory, and general fluid intelligence: A latentvariable approach. Journal of Experimental Psychology: General 128(3):309-31. [DPB, aCB, RPH]10.1037/0096-3445.128.3.309CrossRefGoogle Scholar
Erickson, K., Drevets, W. & Schulkin, J. (2003) Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews 27:233-46. [aCB]10.1016/S0149-7634(03)00033-2CrossRefGoogle ScholarPubMed
Espy, K. A., Kaufmann, P. M., McDiarmid, M. D. & Glisky, M. L. (1999) Executive functioning in preschool children: Performance on A-not-B and other delayed response format tasks. Brain and Cognition 41:178-99. [aCB]10.1006/brcg.1999.1117CrossRefGoogle ScholarPubMed
Evans, J. J., Floyd, R., McGrew, K. S. & Leforgee, M. H. (2001) The relations between measures of Cattell-Horn-Carroll cognitive abilities and reading achievement during childhood and adolescence. School Psychology Review 31:246-62. [aCB]10.1080/02796015.2002.12086154CrossRefGoogle Scholar
Evans, J. St. B. T. & Over, D. E. (2004) If. Oxford University Press. [KES]10.1093/acprof:oso/9780198525134.001.0001CrossRefGoogle Scholar
Fan, J., Fossella, J. A., Sommer, T., Wu, Y. & Posner, M. I. (2003) Executive attention: Imaging and genetic analysis. Paper presented at the Annual Meeting of the Cognitive Neuroscience Society, New York, NY, 2003. Available at: http://140.251.58.136/%7Ejinfan/online_papers/ CNS2003_fMRI_genetic.pdf. [OB]Google Scholar
Fernández-Ballesteros, R., Juan-Espinosa, M. & Abad, F. J. (2001) Sociohistorical changes and intelligence gains. In: Environmental effects on cognitive abilities, ed. Sternberg, R. J. & Grigorenko, E. L., pp. 383-424. Erlbaum. [MV]Google Scholar
Flanagan, D. P. & Ortiz, S. O. (2001) Essentials of cross-battery assessment. Wiley. [JCK]Google Scholar
Flanagan, D. P., McGrew, K. & Ortiz, S. O. (2000) The Wechslerintelligence scales and gF-gC theory: A contemporary approach to interpretation. Allyn & Bacon. [aCB]Google Scholar
Flavell, J. H., Miller, P. H. & Miller, S. A. (2002) Cognitive development, 4th edition. Prentice Hall. [RMF]Google Scholar
Flynn, J. R. (1984) The mean IQ of Americans: Massive gains 1932 to 1978. Psychological Bulletin 95:29-51. [aCB, MV]10.1037/0033-2909.95.1.29CrossRefGoogle Scholar
Flynn, J. R. (1987) Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin 101:171-91. [aCB, MV]10.1037/0033-2909.101.2.171CrossRefGoogle Scholar
Flynn, J. R. (1998a) IQ gains over time: Toward finding the causes. In: The rising curve: Long-term gains in IQ and related measures, ed. Neisser, U., pp. 25-66. American Psychological Association. [MV]10.1037/10270-001CrossRefGoogle Scholar
Flynn, J. R. (1998b) Israeli military IQ tests: Gender differences small; IQ gains large. Journal of Biosocial Science 30:541-53. [MV]10.1017/S0021932098005410CrossRefGoogle Scholar
Flynn, J. R. (1998c) WAIS-III and WISC-III: IQ gains in the United States from 1972 to 1995: How to compensate for obsolete norms. Perceptual and Motor Skills 86:1231-39. [MV]10.2466/pms.1998.86.3c.1231CrossRefGoogle Scholar
Flynn, J. R. (1999) Searching for justice: The discovery of IQ gains over time. American Psychologist 54:5-20. [aCB, MV]10.1037/0003-066X.54.1.5CrossRefGoogle Scholar
Flynn, J. R. (2003) Movies about intelligence: The limitations of g. Current Directions in Psychological Science 12:95-99. [JRF]10.1111/1467-8721.01238CrossRefGoogle Scholar
(in press) Efeito Flynn: Repensando a inteligencia e seus efeitos [The Flynn effect: Rethinking intelligence and what affects it]. In: Introdução à Psicologia das Diferenças Individuals [Introduction to the psychology of individual differences], ed. Flores-Mendoza, C. & Colom, R.. ArtMed. (English translation available from author: jim.flynn@stonebow.otago.ac.nz) [JRF]Google Scholar
Francis, D. D., Caldji, C., Champagne, F., Plotsky, P. M. & Meaney, M. J. (1999a) The role of corticotropin-releasing factor-norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biological Psychiatry 46:1153-66. [aCB]10.1016/S0006-3223(99)00237-1CrossRefGoogle Scholar
Francis, D., Diorio, J., Liu, D. & Meaney, M. J. (1999b) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155-58. [aCB]10.1126/science.286.5442.1155CrossRefGoogle Scholar
Francis, D. D., Diorio, J., Plotsky, P. M. & Meaney, M. J. (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience 22:7840-43. [aCB]10.1523/JNEUROSCI.22-18-07840.2002CrossRefGoogle ScholarPubMed
Fry, A. & Hale, S. (1996) Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science 7:237-41. [NAZ]10.1111/j.1467-9280.1996.tb00366.xCrossRefGoogle Scholar
Garavan, H. (1998) Serial attention within working memory. Memory and Cognition 26:263-76. [NC]10.3758/BF03201138CrossRefGoogle ScholarPubMed
Garcia, R., Vouimba, R.-M., Baudry, M. & Thompson, R. F. (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294-96. [aCB]10.1038/46286CrossRefGoogle ScholarPubMed
Garlick, D. (2002) Understanding the nature of the general factor of intelligence: The role of individual differences in neural plasticity as an explanatory mechanism. Psychological Review 109:116-36. [aCB, DG]10.1037/0033-295X.109.1.116CrossRefGoogle Scholar
Gauvain, M. (2001) The social context of cognitive development. The Guiford Press. [RMF]Google Scholar
Geary, D. C. (2005) The origin of the mind: Evolution of brain, cognition, and general intelligence. American Psychological Association. [KES]10.1037/10871-000CrossRefGoogle Scholar
Gerardi-Caulton, G. (2000) Sensitivity to spatial conflict and the development of self-regulation in children 24-36 months of age. Developmental Science 3(4):397-404. [OB, rCB]10.1111/1467-7687.00134CrossRefGoogle Scholar
Glushakov, A. V., Dennis, D. M., Morey, T. E., Sumners, C., Cucchiara, R. F., Seubert, C. N. & Martynyuk, A. E. (2002) Specific inhibition of N-methyl-D- aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Molecular Psychiatry 7:359-67. [aCB]10.1038/sj.mp.4000976CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L, Hayashi, K. M., Greenstein, D, Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L. & Thompson, P. M. (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA 101:8174-79. [aCB]10.1073/pnas.0402680101CrossRefGoogle ScholarPubMed
Goldberg, T., Berman, K., Fleming, K., Ostrem, J., Van Horn, J., Esposito, G., Mattay, V., Gold, J. & Weinberger, D. (1998) Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study. NeuroImage 7:296-303. [aCB]10.1006/nimg.1998.0338CrossRefGoogle ScholarPubMed
Golden, C. J. (1981) Diagnosis and rehabilitation in clinical neuropsychology. Charles C. Thomas. [JCK]Google Scholar
Goldman-Rakic, P. S. (1999) The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry 46:650-61. [aCB]10.1016/S0006-3223(99)00130-4CrossRefGoogle ScholarPubMed
Gottesman, I. I. (1997) Twins - en route to QTLs for cognition. Science 276:1522-23. [WJ]10.1126/science.276.5318.1522CrossRefGoogle ScholarPubMed
Gottesman, I. I. & Gould, T. D. (2003) The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry 160:636-45. [WJ]10.1176/appi.ajp.160.4.636CrossRefGoogle ScholarPubMed
Gottfredson, L. S. (1997) Why g matters: The complexity of everyday life. Intelligence 24:79-132. [DG, WJ]10.1016/S0160-2896(97)90014-3CrossRefGoogle Scholar
Gottlieb, G. (1998) Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review 105:792-802. [rCB]10.1037/0033-295X.105.4.792-802CrossRefGoogle ScholarPubMed
Gottlieb, G., Wahlsten, D. & Lickliter, R. (1998) The significance of biology for human development: A developmental psychobiological systems view. In: Handbook of child psychology, vol. 1, Theory, ed. Lerner, R., pp. 233-73. Wiley. [aCB]Google Scholar
Gould, E. & Tanapat, P. (1999) Stress and hippocampal neurogenesis. Biological Psychiatry 46:1472-79. [aCB]10.1016/S0006-3223(99)00247-4CrossRefGoogle ScholarPubMed
Grant, S. G. N. (2003) An integrative neuroscience program linking mouse genes to cognition and disease. In: Behavioral genetics in the post-genomic era, ed. Plomin, R., DeFries, J. C., Craig, I. W. & McGuffin, R., pp. 123-38. American Psychological Association. [WJ]10.1037/10480-008CrossRefGoogle Scholar
Gray, J. R., Burgess, G. C., Schaefer, A., Yarkoni, T., Larsen, R. J. & Braver, T. S. (in press) Affective personality differences in neural processing efficiency confirmed using fMRI. Cognitive, Affective and Behavioral Neuroscience. [GCB]Google Scholar
Gray, J. R., Chabris, C. F. & Braver, T. S. (2003) Neural mechanisms of general fluid intelligence. Nature Neuroscience 6:316-22. [arCB, GCB, KES]10.1038/nn1014CrossRefGoogle ScholarPubMed
Greenfield, P. M. (1997) You can't take it with you: Why ability assessments don't cross cultures. American Psychologist 52:1115-24. [aCB]10.1037/0003-066X.52.10.1115CrossRefGoogle Scholar
Griffiths, P. V., Demellweek, C., Fay, N., Robinson, P. H. & Davidson, D. C. (2000) Wechsler subscale IQ and subtest profile in early treated phenylketonuria. Archives of Disease in Childhood 82:209-15. [aCB]10.1136/adc.82.3.209CrossRefGoogle ScholarPubMed
Grigorenko, E. L. & Sternberg, R. J. (2003) The nature - nurture issue. In: An introduction to developmental psychology, ed. Slater, A. & Bremner, G., pp. 64-91. Blackwell. [RMF]Google Scholar
Groenewegen, H. J. & Uylings, H. B. M. (2000) The prefrontal cortex and the integration of sensory, limbic, and autonomic information. In: Progress in brain research, vol. 126, Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures, ed. Uylings, H., Van Eden, C., De Bruin, J., Feenstra, M. & Pennartz, C., pp. 3-28. Elsevier. [aCB]Google Scholar
Gunnar, M. R. (2001) The role of glucocorticoids in anxiety disorders: A critical analysis. In: The developmental psychopathology of anxiety, ed. Vasey, M. W. & Dadds, M. R., pp. 143-59. Oxford University Press. [OB]10.1093/med:psych/9780195123630.003.0007CrossRefGoogle Scholar
Gunnell, D., Harrison, G., Rasmussen, F., Fouskakis, D. & Tynelius, P. (2002) Associations between premorbid intellectual performance, early life exposures, and early onset schizophrenia. British Journal of Psychiatry 181:298-305. [aCB]10.1192/bjp.181.4.298CrossRefGoogle ScholarPubMed
Gustafsson, J.-E. (1984) A unifying model for the structure of intellectual abilities. Intelligence 8:179-203. [aCB, RPH, KK, MV]10.1016/0160-2896(84)90008-4CrossRefGoogle Scholar
Gustafsson, J.-E. (1988) Hierarchical models of individual differences in cognitive abilities. In: Advances in the psychology of human intelligence, vol. 4, ed. Sternberg, R., pp. 35-71. Erlbaum. [aCB, KK]Google Scholar
Haier, R.J. (1993) Cerebral glucose metabolism and intelligence. In: Biological approaches to the study of human intelligence, ed. Vernon, P. A.. Ablex. [aCB]Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004) Structural brain variation and general intelligence. NeuroImage 23:425-33. [aCB]10.1016/j.neuroimage.2004.04.025CrossRefGoogle ScholarPubMed
Haier, R. J., White, N. S. & Alkire, T. M. (2003) Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence 31:429-41. [aCB]10.1016/S0160-2896(03)00025-4CrossRefGoogle Scholar
Halford, G. (1993) Children's understanding: The development of mental models. Erlbaum. [IVV]Google Scholar
Halford, G. S., Baker, R., McCredden, J. E. & Bain, J. D. (2005) How many variables can humans process? Psychological Science 16:70-76. [NC]10.1111/j.0956-7976.2005.00782.xCrossRefGoogle ScholarPubMed
Hariri, A., Mattay, V. S., Tessitore, A., Fera, F. & Weinberger, D. R. (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry 53:494-501. [aCB]10.1016/S0006-3223(02)01786-9CrossRefGoogle Scholar
Haug, H., Barmwater, U., Egger, R., Fischer, D., Kuhl, S. & Sass, N. L. (1983) Anatomical changes in the aging brain: Morphometric analysis of the human prosencephalon. In: Aging, vol. 21: Brain aging: Neuropathology and neuropharmacology, ed. Cervos-Navarro, J. & Sarkander, H. I., pp. 1-12. Raven Press. [NAZ]Google Scholar
Hedden, T. & Gabrieli, J. D. E. (2004) Insights into the aging mind: A view from cognitive neuroscience. Nature Reviews: Neuroscience 5:87-96. [rCB]10.1038/nrn1323CrossRefGoogle ScholarPubMed
Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., Klein, S., Grusser, S. M., Flor, H., Schumann, G., Mann, K. & Buchel, C. (2005) Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience 8:20-21. [MW]10.1038/nn1366CrossRefGoogle ScholarPubMed
Heitz, R. P. & Engle, R. W. (submitted) Focusing the spotlight: Individual differences in visual attention control. [RPH]Google Scholar
Heitz, R. P., Unsworth, N. & Engle, R. W. (2004) Working memory capacity, attention control, and fluid intelligence. In: Handbook of understanding and measuring intelligence, ed. Wilhelm, O. and Engle, R. W.. Sage. [RPH]Google Scholar
Horn, J. L. (1970) Organization of data on life-span development of human abilities. In: Life-span developmental psychology: Research and theory, ed. Goulet, L. R. and Baltes, P. B., p. 63. Academic Press. [NAZ]Google Scholar
Horn, J. L. (1976) Human abilities: A review of research and theory in the early 1970s. Annual Review of Psychology 27:437-85.10.1146/annurev.ps.27.020176.002253CrossRefGoogle ScholarPubMed
Horn, J. L. (1985) Remodeling old models of intelligence. In: Handbook of intelligence: Theories, measurements, and applications, ed. Wolman, B. B., pp. 267-300. Wiley. [WJ]Google Scholar
Horn, J. L. (1989) Models of intelligence. In: Intelligence: Measurement, theory, and public policy, ed. Linn, R. L., pp. 29-73. University of Illinois Press. [WJ]Google Scholar
Horn, J. L. (1998) A basis for research on age differences in cognitive capabilities. In: Human cognitive abilities in theory and practice, ed. McArdle, J. J. & Woodcock, R. W., pp. 57-91. Riverside. [WJ]Google Scholar
Horn, J. L. & Cattell, R. B. (1966) Refinement and test of the theory of fluid and crystallized intelligence. Journal of Educational Psychology 57:253-70. [JCK]10.1037/h0023816CrossRefGoogle Scholar
Horn, J. L. & Cattell, R. B. (1967) Age differences in fluid and crystallized intelligence. Acta Psychologica 26:107-29. [aCB, KES, IVV]10.1016/0001-6918(67)90011-XCrossRefGoogle ScholarPubMed
Horn, J. & Hofer, S. M. (1992) Major abilities and development in the adult period. In: Intellectual development, ed. Sternberg, R. & Berg, C., pp. 44-91. Cambridge University Press. [aCB]Google Scholar
Horn, J. & Noll, J. (1997) Human cognitive capabilities: Gf-Gc theory. In: Contemporary intellectual assessment: Theories, tests and issues, ed. Flanagan, D., Genshaft, J. & Harrison, P., pp. 53-91. Guilford. [aCB, KES]Google Scholar
Hummel, J. E. & Holyoak, K. J. (2003) A symbolic-connectionist theory of relational inference and generalization. Psychological Review 110:220-63. [IVV]10.1037/0033-295X.110.2.220CrossRefGoogle ScholarPubMed
Inhelder, B. & Piaget, J. (1958) The growth of logical thinking from childhood to adolescence. Basic Books. [JCK]10.1037/10034-000CrossRefGoogle Scholar
Isingrini, M. & Vazou, F. (1997) Relation between fluid intelligence and frontal lobe in older adults. International Journal of Aging and Human Development 45:99-109. [NAZ]10.2190/WHWX-YNVB-079V-2L74CrossRefGoogle ScholarPubMed
Jackendoff, R. (1996) How language helps us think. Pragmatics and Cognition 4:1-34. [KES]10.1075/pc.4.1.03jacCrossRefGoogle Scholar
Jensen, A. R. (1998) The g factor: The science of mental ability. Praeger. [aCB, JRF, DG, WJ, MV]Google Scholar
Jensen, A. R. (2000a) “The g Factor” is about variance in mental abilities, not a cognitive theory of mental structure. Psycoloquy, 00.11.041.intelligence-g-factor.40.jensen. ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/2000.volume.11/. [MA]Google Scholar
Jensen, A. R. (2000b) A nihilistic philosophy of science for a scientific psychology? Psycoloquy, 00.11.088.intelligence-g-factor.49.jensen. ftp://ftp.princeton.edu/pub/ harnad / Psycoloquy /2000. volume.11/. [MA]Google Scholar
Johnson, W. & Bouchard, J. T., Jr. (2005) The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence 33:393-416. [rCB, WJ, MV]10.1016/j.intell.2004.12.002CrossRefGoogle Scholar
(in press) Constructive replication of the visual-perceptual-image rotation (VPR) model in Thurstone's (1941) battery of 60 tests of mental ability. Intelligence. [WJ]Google Scholar
Johnson, W., Bouchard, J. T., Jr., Krueger, R. F., McGue, M. & Gottesman, I. I. (2004) Just one g: Consistent results from three test batteries. Intelligence 32:95-107. [WJ]10.1016/S0160-2896(03)00062-XCrossRefGoogle Scholar
Kail, R. (1991) Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin 109:490-501. [RMF]10.1037/0033-2909.109.3.490CrossRefGoogle ScholarPubMed
Kane, M. J. & Engle, R. W. (2002) The role of prefrontal cortex in working memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review 9(4):637-71. [aCB, DG, RPH, NAZ]10.3758/BF03196323CrossRefGoogle ScholarPubMed
Kane, M. J. & Engle, R. W. (2003) Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General 132(1):47-70. [KES]10.1037/0096-3445.132.1.47CrossRefGoogle ScholarPubMed
Kane, M. J. & Engle, R. W. (2004) Working memory capacity and executive control of task-set switching. Paper presented at the 2nd International Conference on Working Memory, Kyoto, Japan, August 2004. [RPH]Google Scholar
Kane, M. J., Bleckley, K. M., Conway, A. R. A. & Engle, R. W. (2001) A controlled- attention view of working-memory capacity. Journal of Experimental Psychology: General 130:169-83. [RPH]10.1037/0096-3445.130.2.169CrossRefGoogle ScholarPubMed
Kane, M. J., Hambrick, D. Z. & Conway, A. R. A. (2005) Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin 131(1):66-71. [GCB, RPH]10.1037/0033-2909.131.1.66CrossRefGoogle ScholarPubMed
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W. & Engle, R. W. (2004) The generality of working memory capacity: A latent variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General 133:189-217. [RPH]10.1037/0096-3445.133.2.189CrossRefGoogle ScholarPubMed
Kaufman, A. S. (2001) WAIS-III IQs, Horn's theory, and generational changes from young adulthood to old age. Intelligence 29:131-67. [JCK]10.1016/S0160-2896(00)00046-5CrossRefGoogle Scholar
Kaufman, A. S. & Kaufman, N. L. (1993) Kaufman Adolescent and Adult Intelligence Test (KAIT) manual. American Guidance Service. [JCK]Google Scholar
Kaufman, A. S. & Kaufman, N. L. (2004) Kaufman Assessment Battery for Children, 2nd edition. American Guidance Service. [JCK]Google Scholar
Kaufman, J. & Charney, D. (2001) Effects of early stress on brain structure and function: Implications for understanding the relationship between child maltreatment and depression. Development and Psychopathology 13:451-71. [aCB]10.1017/S0954579401003030CrossRefGoogle ScholarPubMed
Keith, T. Z. (2005) Using confirmatory factor analysis to aid in understanding the constructs measured by intelligence tests. In: Contemporary intellectual assessment: Theories, tests, and issues, ed. Flanagan, D. P. & Harrison, P. L., 2nd edition, pp. 581-614. Guilford Press. [JCK]Google Scholar
Kinnunen, A. K., Keonig, J. I. & Bilbe, G. (2003) Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole. Journal of Neurochemistry 86:736-48. [aCB]10.1046/j.1471-4159.2003.01873.xCrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H. & Westerberg, H. (2002) Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology 24:781-91. [aCB]10.1076/jcen.24.6.781.8395CrossRefGoogle ScholarPubMed
Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148-51. [aCB]10.1038/20178CrossRefGoogle ScholarPubMed
Korkman, M., Kirk, U. & Kemp, S. (1998) NEPSY: A developmental neuropsychological assessment. Psychological Corporation. [JCK]Google Scholar
Kremen, W. S., Seidman, L. J., Faraone, S. V. & Tsuang, M. T. (2001) Intelligence quotient and neuropsychological profile in patients with schizophrenia and in normal volunteers. Biological Psychiatry 50:453-62. [aCb]10.1016/S0006-3223(01)01099-XCrossRefGoogle ScholarPubMed
Krikorian, R. & Bartok, J. A. (1998) Developmental data for the Porteus Maze Test. Clinical Neuropsychologist 12:305-10. [aCB]10.1076/clin.12.3.305.1984CrossRefGoogle Scholar
Kuhn, T. S. (1962) The structure of scientific revolutions. University of Chicago Press. [rCB]Google Scholar
Kyllonen, P. C. (1996) Is working memory capacity Spearman's g? In: Human abilities: Their nature and measurement, ed. Dennis, I. & Tapsfield, P., pp. 49-76. Erlbaum. [aCB]Google Scholar
Kyllonen, P. C. & Christal, R. E. (1990) Reasoning ability is (little more than) working memory capacity?! Intelligence 14:389-433. [DPB, arCB, DG, RPH]10.1016/S0160-2896(05)80012-1CrossRefGoogle Scholar
Laurent, J., Swerdlik, M. & Ryburn, M. (1992) Review of validity research on the Stanford-Binet Intelligence Scale: Fourth edition. Psychological Assessment 4:102-12. [aCB]10.1037/1040-3590.4.1.102CrossRefGoogle Scholar
Lautrey, J. (2002) Is there a general factor of cognitive development? In: The general factor of intelligence: How general is it? ed. Grigorenko, E. L. & Sternberg, R. J., pp. 117-48. Erlbaum. [RMF]Google Scholar
Le Pen, G., Gorttick, A. J., Higgins, G.A., Martin, J.R., Jenck, F. & Moreau, J.-L. (2000) Spatial and associative learning deficits induced by neonatal excitotoxic hippocampal damage in rats: Further evaluation of an animal model of schizophrenia. Behavioral Pharmacology 11:257-68. [aCB]10.1097/00008877-200006000-00009CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989) Cognitive - emotional interactions in the brain. Cognition and Emotion 3:267-89. [aCB]10.1080/02699938908412709CrossRefGoogle Scholar
LeDoux, J. E. (1995) Emotion: Clues from the brain. Annual Review of Psychology 46:209-35. [aCB]10.1146/annurev.ps.46.020195.001233CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1996) The emotional brain. Touchstone. [aCB]Google Scholar
Lee, I. & Kessner, R. P. (2002) Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nature Neuroscience 5:162-68. [aCB]10.1038/nn790CrossRefGoogle ScholarPubMed
Lehrl, S. Triebig, G. & Fischer, B. (1995) Multiple-choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurologica Scandinavica 91:335-45. [MV]10.1111/j.1600-0404.1995.tb07018.xCrossRefGoogle ScholarPubMed
Leigland, L. A., Schulz, L. E. & Janowsky, J. S. (2004) Age related changes in emotional memory. Neurobiology of Aging 25:1117-24. [NAZ]10.1016/j.neurobiolaging.2003.10.015CrossRefGoogle ScholarPubMed
Lépine, R., Barrouillet, P. & Camos, V. (2005) What makes working memory spans so predictive of high level cognition? Psychonomic Bulletin and Review 12:165-70. [NC]10.3758/BF03196363CrossRefGoogle ScholarPubMed
Leslie, A. M. (1987) Pretense and representation: The origins of “theory of mind.” Psychological Review 94:412-26. [KES]10.1037/0033-295X.94.4.412CrossRefGoogle Scholar
Lewis, D. A., Pierri, J. N., Volk, D. W., Melchitzky, D. S. & Woo, T. W. (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biological Psychiatry 46:616-26. [aCB]10.1016/S0006-3223(99)00061-XCrossRefGoogle ScholarPubMed
Li, S.-C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W. & Baltes, P. (2004) Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science 15:155-63.10.1111/j.0956-7976.2004.01503003.xCrossRefGoogle ScholarPubMed
Lindley, S.E., Bengoechea, T.G., Wong, D.L., & Schatzberg, A.F. (2002) Mesotelencephalic dopamine neurochemical responses to glucocorticoid administration and adrenalectomy in Fischer 344 and Lewis rats. Brain Research 958: 414-22. [aCB]10.1016/S0006-8993(02)03719-8CrossRefGoogle ScholarPubMed
Lipska, B. K. & Weinberger, D. R. (2000a) Early disruption of corticolimbic circuitry as a model of schizophrenia. In: Contemporary issues in modeling psychopathology, ed. Myslobodsky, M. & Weiner, I., pp. 259-74. Kluwer. [aCB]Google Scholar
Lipska, B. K. & Weinberger, D. R. (2000b) To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23:223-39. [aCB]10.1016/S0893-133X(00)00137-8CrossRefGoogle Scholar
Lipska, B. K., Aultman, J. M., Verma, A., Weinberger, D. R. & Moghaddam, B. (2002a) Neonatal damage of the ventral hippocampus impairs memory in the rat. Neuropsychopharmacology 27:47-54. [aCB]10.1016/S0893-133X(02)00282-8CrossRefGoogle Scholar
Lipska, B.K., Halim, N.D., Segal, P.N. & Weinberger, D.R. (2002b) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. Journal of Neuroscience 22: 2835-42. [aCB]10.1523/JNEUROSCI.22-07-02835.2002CrossRefGoogle Scholar
Liu, D., Diorio, J., Francis, D. D. & Meaney, M. J. (2000) Maternal care, hippocampal neurogenesis, and cognitive development in rats. Nature Neuroscience 3:799-806. [aCB]10.1038/77702CrossRefGoogle Scholar
Logan, G. D. & Bundesen, C. (2003) Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance 29:575-99. [RPH]Google ScholarPubMed
Lopez, J. F., Akil, H. & Watson, S. J. (1999) Neural circuits mediating stress. Biological Psychiatry 46:1461-71. [aCB]10.1016/S0006-3223(99)00266-8CrossRefGoogle ScholarPubMed
Lubinski, D. (2004) Introduction to the special section on cognitive abilities: 100 years after Spearman's 1904 “‘General intelligence,’ objectively determined and measured.” Journal of Personality and Social Psychology 86:96-111. [WJ]10.1037/0022-3514.86.1.96CrossRefGoogle Scholar
Luciana, M. (2001) Dopamine-opiate modulations of reward-seeking behavior: Implications for the functional assessment of prefrontal development. In: Handbook of developmental cognitive neuroscience, ed. Nelson, C. A. & Luciana, M.. MIT Press. [OB]Google Scholar
Luciana, M. & Nelson, C. A. (1998) The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia 36:273-93. [aCB]10.1016/S0028-3932(97)00109-7CrossRefGoogle ScholarPubMed
Luciano, M., Wright, M. J., Geffen, G., Geffen, L., Smith, G. & Martin, N. (2004) A genetic investigation of the covariation among inspection time, choice reaction time, and IQ subtests. Behavior Genetics 34:41-50. [aCB]10.1023/B:BEGE.0000009475.35287.9dCrossRefGoogle Scholar
Luciano, M., Wright, M., Smith, G., Geffen, G., Geffen, L. & Martin, N. (2001) Genetic covariance among measures of processing speed, working memory, and IQ. Behavior Genetics 31:581-92. [aCB]10.1023/A:1013397428612CrossRefGoogle ScholarPubMed
Luck, S. J. & Vogel, E. K. (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279-81. [NC]10.1038/36846CrossRefGoogle ScholarPubMed
Luria, A. R. (1970) The functional organization of the brain. Scientific American 222:66-78. [JCK]10.1038/scientificamerican0370-66CrossRefGoogle ScholarPubMed
Lynn, R. (1990) The role of nutrition in secular increases in intelligence. Personality and Individual Differences 11:273-85. [MV]10.1016/0191-8869(90)90241-ICrossRefGoogle Scholar
Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simon, H. & Le Moal, M. (1995) Adoption reverses the long-term impairments in glucocorticoid feedback induced be prenatal stress. Journal of Neuroscience 15:110-16. [aCB]10.1523/JNEUROSCI.15-01-00110.1995CrossRefGoogle ScholarPubMed
MacDonald, A. W., Cohen, J. D., Stegner, V. A. & Carter, C. S. (2000) Dissociating the role of dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science 288:1835-38. [arCB]10.1126/science.288.5472.1835CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1998) IQ and human intelligence. Oxford University Press. [MV]Google Scholar
Malkova, L., Bachevalier, J., Webster, M. & Mishkin, M. (2000) Effects of neonatal inferior prefrontal and medial temporal lesions on learning the rule for delayed nonmatching-to-sample. Developmental Neuropsychology 18(3):399-421. [aCB]10.1207/S1532694207MalkovaCrossRefGoogle ScholarPubMed
Mathew, S. J., Shungu, D. C., Mao, X., Smith, E. L., Perera, G. M., Kegeles, L. S., Perera, T., Lisanby, S. H., Rosenblum, L. A., Gorman, J. M. & Coplan, J. D. (2003) A magnetic resonance spectroscopic imaging study of adult nonhuman primates exposed to early-life stressors. Biological Psychiatry 54:727-35. [OB]10.1016/S0006-3223(03)00004-0CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L. & Fox, P. T. (1999) Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry 156:675-82. [aCB]10.1176/ajp.156.5.675CrossRefGoogle ScholarPubMed
McArdle, J. J., Ferrer-Caja, E., Hamagami, F. & Woodcock, R. W. (2002) Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology 38:115-42. [aCB]10.1037/0012-1649.38.1.115CrossRefGoogle ScholarPubMed
McCandliss, B. D. & Noble, K. G. (2003) The development of reading impairment: A cognitive neuroscience model. Mental Retardation and Developmental Disabilities Research Reviews 9:196-205. [aCB]10.1002/mrdd.10080CrossRefGoogle ScholarPubMed
McGaugh, J. L., Cahill, L. & Roozendaal, B. (1996) Involvement of the amygdala in memory storage: Interaction with other brain systems. Proceedings of the National Academy of Sciences USA 93:13508-14.10.1073/pnas.93.24.13508CrossRefGoogle ScholarPubMed
McGrew, K. S. (1997) Analysis of major intelligence batteries according to a proposed comprehensive gF-gC framework. In: Contemporary intellectual assessment: Theories, tests and issues, ed. Flanagan, D., Genshaft, J. & Harrison, P., pp. 151-80. Guilford Press. [aCB, JCK]Google Scholar
McGrew, K. S. & Hessler, G. L. (1995) The relationship between the WJ-R GF-GC cognitive clusters and mathematics achievement across the life span. Journal of Psychoeducational Assessment 13:21-38. [aCB]10.1177/073428299501300102CrossRefGoogle Scholar
McGrew, K. S. & Woodcock, R. W. (2001) Technical manual: Woodcock-Johnson III. Riverside. [KES]Google Scholar
McLean, J. F. & Hitch, G. J. (1999) Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology 74:240-60. [aCB]10.1006/jecp.1999.2516CrossRefGoogle ScholarPubMed
McLoyd, V. (1998) Socioeconomic disadvantage and child development. American Psychologist 53:185-204. [aCB]10.1037/0003-066X.53.2.185CrossRefGoogle ScholarPubMed
Meyer-Lindberg, A., Miletich, R. S., Kohn, P. D., Esposito, G., Carson, R. E., Quarantelli, M., Weinberger, D. R. & Berman, K. F. (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nature Neuroscience 5:267-71. [aCB]10.1038/nn804CrossRefGoogle Scholar
Miller, E. K. & Cohen, J. D. (2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24:167-202. [aCB, GCB]10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Mingroni, M. A. (2004) The secular rise in IQ: Giving heterosis a closer look. Intelligence 32:65-83. [MV]10.1016/S0160-2896(03)00058-8CrossRefGoogle Scholar
Mink, J. W. (2003) The basal ganglia. In: Fundamental neuroscience, 2nd edition, ed. Squire, L. R., Bloom, F. E., McConnell, S. K., Roberts, J. L., Spitzer, N. C. & Zigmond, M. J., pp. 815-39. Academic Press. [rCB]Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology 41:49-100. [OB, arCB, GCB, RPH]10.1006/cogp.1999.0734CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P. & Hegarty, M. (2001) How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General 130:621-40. [RPH]10.1037/0096-3445.130.4.621CrossRefGoogle ScholarPubMed
Morey, C. C. & Cowan, N. (2004) When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin and Review 11:296-301.10.3758/BF03196573CrossRefGoogle ScholarPubMed
Morey, C. C. & Cowan, N. (2005) When do visual and verbal memories conflict? The importance of working-memory load and retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition 31(4):703-13. [NC]Google ScholarPubMed
Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L. & Knowlton, B. J. (2004) A neurocomputational model of analogical reasoning and its breakdown in Frontotemporal Lobar Degeneration. Journal of Cognitive Neuroscience 16:260-71. [IVV]10.1162/089892904322984553CrossRefGoogle ScholarPubMed
Naglieri, J. A. & Das, J. P. (1997) Cognitive assessment system interpretive manual. Riverside. [JCK]Google Scholar
Neisser, U., ed. (1998) The rising curve: Long-term gains in IQ and related measures. American Psychological Association. [MV]10.1037/10270-000CrossRefGoogle Scholar
Neisser, U., Boodoo, G., Bouchard, T. J., Jr., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J. & Urbina, S. (1996) Intelligence: Knowns and unknowns. American Psychologist 51:77-101. [DG]10.1037/0003-066X.51.2.77CrossRefGoogle Scholar
Nesse, R. (1998) Emotional disorders in evolutionary perspective. British Journal of Medical Psychology 71:397-415. [EST]10.1111/j.2044-8341.1998.tb01000.xCrossRefGoogle ScholarPubMed
Nichols, S. & Stich, S. P. (2003) Mindreading: An integrated account of pretence, self-awareness, and understanding other minds. Oxford University Press. [KES]10.1093/0198236107.001.0001CrossRefGoogle Scholar
Noble, K. G., Norman, M. F. & Farrah, M. J. (2005) Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science 8:74-87. [RMF]10.1111/j.1467-7687.2005.00394.xCrossRefGoogle ScholarPubMed
Oberauer, K. (2002) Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition 28:411-21. [NC]Google ScholarPubMed
Oberauer, K., Süß, H., Wilhelm, O. & Wittman, W. W. (2003) The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence 31:167-93. [RPH]10.1016/S0160-2896(02)00115-0CrossRefGoogle Scholar
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002) Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience 14:1215-29. [aCB]10.1162/089892902760807212CrossRefGoogle ScholarPubMed
O'Connor, T. G., Bredenkamp, D., Rutter, M. & the English and Romanian Adoptees (ERA) Study Team (1999) Attachment disturbances and disorders in children exposed to early severe deprivation. Infant Mental Health Journal (Special Issue: Disturbances and Disorders of Attachment) 20:10-29. [OB]10.1002/(SICI)1097-0355(199921)20:1<10::AID-IMHJ2>3.0.CO;2-S3.0.CO;2-S>CrossRefGoogle Scholar
Olesen, P., Westerberg, H. & Klingberg, T. (2004) Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience 7:75-79. [rCB]10.1038/nn1165CrossRefGoogle ScholarPubMed
Panksepp, J. (2003) Can anthropomorphic analyses of separation cries in other animals inform us about the emotional nature of social loss in humans? Comment on Blumberg and Sokoloff (2001). Psychological Review 110:376-88. [OB]10.1037/0033-295X.110.2.376CrossRefGoogle ScholarPubMed
Paus, T. (2001) Primate anterior cingulate cortex: Where motor control, drive, and cognition interface. Nature Reviews: Neuroscience 2:417-24. [aCB]10.1038/35077500CrossRefGoogle ScholarPubMed
Pennington, B. F. (1997) Dimensions of executive functions in normal and abnormal development. In: Development of the prefrontal cortex: Evolution, neurobiology, and behavior, ed. Krasnegor, N., Lyon, R. & Goldman-Rakic, P., pp. 265-81. Brookes. [aCB]Google Scholar
Pennington, B. F. & Ozonoff, S. (1996) Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry 37:51-87. [aCB]10.1111/j.1469-7610.1996.tb01380.xCrossRefGoogle ScholarPubMed
Peterson, S. E., van Mier, H., Fiez, J. A. & Raichle, M. E. (1998) The effects of practice on the functional anatomy of task performance. Proceedings of the National Academy of Sciences USA 95:853-60. [GCB]10.1073/pnas.95.3.853CrossRefGoogle Scholar
Plomin, R. & Craig, I. W. (in press) Intelligence. Annual Review of Genomics and Human Genetics. [WJ]Google Scholar
Plomin, R. & Spinath, F. (2002) Genetics and general cognitive ability (g). Trends in Cognitive Sciences 6:169-76. [aCB]10.1016/S1364-6613(00)01853-2CrossRefGoogle Scholar
Posner, M. I. & Peterson, S. E. (1990) The attention system of the human brain. Annual Review of Neuroscience 13:25-42. [NC]10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Posner, M. I. & Rothbart, M. K. (1998) Attention, self regulation and consciousness. Philosophical Transactions of the Royal Society of London 353:1915-27. [OB]Google ScholarPubMed
Posner, M. I. & Rothbart, M. K. (2000) Developing mechanisms of self-regulation. Development and Psychopathology 12:427-41. [OB, arCB]10.1017/S0954579400003096CrossRefGoogle Scholar
Posner, M. I. & Rothbart, M. K. (2004) Developing self-regulation in preschool children. Paper presented at the annual meeting of the American Association for the Advancement of Science, Seattle, Washington, February 2004. [aCB]Google Scholar
Postle, B. R., Berger, J. S. & D'Esposito, M. (1999) Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proceedings of the National Academy of Sciences USA 96:12959-64. [NC]10.1073/pnas.96.22.12959CrossRefGoogle ScholarPubMed
Postle, B. R., Druzgal, T. J. & D'Esposito, M. (2003) Seeking the neural substrates of visual working memory storage. Cortex 39:927-46.10.1016/S0010-9452(08)70871-2CrossRefGoogle ScholarPubMed
Povinelli, D. J. & Giambrone, S. (2001) Reasoning about beliefs: A human specialization? Child Development 72:691-95. [KES]10.1111/1467-8624.00307CrossRefGoogle ScholarPubMed
Prabhakaran, V., Narayanan, K., Zhao, Z. & Gabrieli, J. D. E. (2000) Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience 3:85-90. [aCB]10.1038/71156CrossRefGoogle ScholarPubMed
Prabhakaran, V., Rypma, B. & Gabrieli, J. D. E. (2001) Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the Necessary Arithmetic Operations Test. Neuropsychology 15:115-27. [aCB]10.1037/0894-4105.15.1.115CrossRefGoogle ScholarPubMed
Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. (1997) Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology 33:43-63. [aCB, DG]10.1006/cogp.1997.0659CrossRefGoogle ScholarPubMed
Pugh, K., Mencl, W., Jenner, A., Katz, L., Frost, S., Lee, J., Shaywitz, S. & Shaywitz, B. (2001) Neurobiological studies of reading and reading disability. Journal of Communication Disorders 34:479-92. [aCB]10.1016/S0021-9924(01)00060-0CrossRefGoogle ScholarPubMed
Puglisi-Allegra, S., Cabib, S., Pascucci, T., Ventura, R., Cali, F. & Romano, V. (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. NeuroReport 11:1361-64. [aCB]10.1097/00001756-200004270-00042CrossRefGoogle Scholar
Ramey, C. T. & Campbell, F. A. (1991) Poverty, early childhood education, and academic competence: The Abecedarian experiment. In: Children in poverty, ed. Huston, A.. Cambridge University Press. [aCB]Google Scholar
Ramey, C. T., Campbell, F. A. & Blair, C. (1998) The Abecedarian Project: Long-term effectiveness of educational daycare beginning at birth. In: Social programs that work, ed. Crane, J., pp. 163-83. Russell Sage Foundation. [aCB]Google Scholar
Ranganath, C., Johnson, M. K. & D'Esposito, M. (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41:378-89. [aCB]10.1016/S0028-3932(02)00169-0CrossRefGoogle ScholarPubMed
Rapoport, M., van Reekum, R. & Mayberg, H. (2000) The role of the cerebellum in cognition and behavior: A selective review. Journal of Neuropsychiatry and Clinical Neurosciences 12:193-98. [MW]10.1176/jnp.12.2.193CrossRefGoogle ScholarPubMed
Raz, N. (1996) Neuroanatomy of the aging brain observed in vivo. In: Neuroimaging II: Clinical applications, pp. 153-82, ed. Bigler, E. D.. Plenum Press. [NAZ]10.1007/978-1-4899-1769-0_6CrossRefGoogle Scholar
Raz, N., Torres, I. J., Spencer, W. D. & Acker, J. D. (1993) Pathoclysis in aging human cerebral cortex: Evidence from in vivo MRI morphometry. Psychobiology 15:21-36. [NAZ]Google Scholar
Richland, L. E., Morrison, R. G. & Holyoak, K. J. (2004) Working memory and inhibition as constraints on children's development of analogical reasoning. In: Proceedings of the Twenty-sixth Annual Conference of the Cognitive Science Society, ed. Forbus, K., Gentner, D. & Regier, T., pp. 1149-54. Erlbaum. [IVV]Google Scholar
Robin, N. & Holyoak, K. J. (1995) Relational complexity and the functions of prefrontal cortex. In: The cognitive neurosciences, ed. Gazzaniga, M. S., pp. 987-97. MIT Press. [IVV]Google Scholar
Roid, G. H. (2003) Stanford-Binet intelligence scales, 5th edition. Riverside. [JCK]Google Scholar
Roozendaal, B. (2000) Glucocorticoids and the regulation of memory. Psychoneuroendocrinology 25:213-38. [aCB]10.1016/S0306-4530(99)00058-XCrossRefGoogle ScholarPubMed
Rowe, D., Jacobsen, K. & Van den Oord, E. (1999) Genetic and environmental influences on vocabulary IQ: Parental education level as moderator. Child Development 70:1151-62. [aCB]10.1111/1467-8624.00084CrossRefGoogle ScholarPubMed
Rushton, J. P. (1999) Secular gains in IQ not related to the g factor and inbreeding depression - unlike Black-White differences: A reply to Flynn. Personality and Individual Differences 26:381-89. [MV]Google Scholar
Russell, J. (1999) Cognitive development as an executive process - in part: A homeopathic dose of Piaget. Developmental Science 2:247-95. [RMF]10.1111/1467-7687.00072CrossRefGoogle Scholar
Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. (1999) Load dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 9:216-26. [aCB]10.1006/nimg.1998.0404CrossRefGoogle ScholarPubMed
Salthouse, T. A., Atkinson, T. M. & Berish, D. E. (2003) Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General 132:566-94. [KES]10.1037/0096-3445.132.4.566CrossRefGoogle ScholarPubMed
Saunders, R. C., Kolachana, B. S., Bachevalier, J. & Weinberger, D. R. (1998) Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393:169-71. [aCB]10.1038/30245CrossRefGoogle ScholarPubMed
Sawaguchi, T. & Goldman-Rakic, P. S. (1991) D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science 251:947-50. [aCB]10.1126/science.1825731CrossRefGoogle ScholarPubMed
Schacter, D. L. (1989) On the relation between memory and consciousness: Dissociable interactions and conscious experience. In: Varieties of memory and consciousness: Essays in honor of Endel Tulving, ed. Roediger, H. L. & Craik, F. I. M.. Erlbaum. [NC]Google Scholar
Schaie, K. W. (1994) The course of adult intellectual development. American Psychologist 49:304-13. [aCB]10.1037/0003-066X.49.4.304CrossRefGoogle ScholarPubMed
Schallberger, U. (1987) HAWIK und HAWIK-R: Ein empirischer Vergleich [HAWIK and HAWIK-R: An empirical comparison]. Diagnostica 33:1-13. [MV]Google Scholar
Schmahmann, J. D. (1998) Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Sciences 2:362-71. [aCB]10.1016/S1364-6613(98)01218-2CrossRefGoogle ScholarPubMed
Schretlen, D., Pearlson, G. D., Anthony, J. C., Aylward, E. H., Augustine, A. M., Davis, A. & Barta, P. (2000) Elucidating the contributions of processing speed, executive ability and frontal lobe volume to normal age-related differences in fluid intelligence. Journal of the International Neuropsychological Society 6:52-61. [NAZ]10.1017/S1355617700611062CrossRefGoogle ScholarPubMed
Schubert, M. T. & Berlach, G. (1982) Neue Richtlinien zur Interpretation des Hamburg-Wechsler-Intelligenztests für Kinder (HAWIK) [New guidelines for the interpretation of the Hamburg-Wechsler Intelligence Test for Children (HAWIK)]. Zeitschrift für Klinische Psychologie 11:253-79. [MV]Google Scholar
Schultz, S. K. & Andreasen, N. C. (1999) Schizophrenia. Lancet 353:1425-30. [MW]10.1016/S0140-6736(98)07549-7CrossRefGoogle ScholarPubMed
Seamans, J. K., Floresco, S. B. & Philips, A. G. (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. Journal of Neuroscience 18:1613-21. [aCB]10.1523/JNEUROSCI.18-04-01613.1998CrossRefGoogle ScholarPubMed
Shaywitz, B., Shaywitz, S., Pugh, K., Mencl, W., Fulbright, K., Skudlarski, P., Constable, R., Marchione, K., Fletcher, J., Lyon, G. R. & Core, J. (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry 52:101-10. [aCB]10.1016/S0006-3223(02)01365-3CrossRefGoogle ScholarPubMed
Siegler, R. (1996) Emerging minds: The process of change in childrens thinking. Oxford University Press. [RMF]10.1093/oso/9780195077872.001.0001CrossRefGoogle Scholar
Sikora, D. M., Haley, P., Edwards, J. & Butler, R. W. (2002) Tower of London performance in children with poor arithmetic skills. Developmental Neuropsychology 21:243-54. [aCB]10.1207/S15326942DN2103_2CrossRefGoogle Scholar
Simon, J. R. & Berbaum, K. (1990) Effect of conflicting cues on information processing: The “Stroop effect” vs. the “Simon effect.” Acta Psychologica (Amsterdam) 73:159-70. [OB]10.1016/0001-6918(90)90077-SCrossRefGoogle ScholarPubMed
Simon, O., Kherif, F., Flandin, G., Poline, J., Riviere, D., Mangin, J., Le Bihan, D. & Dehaene, S. (2004) Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. Neuroimage 23:1192-202. [rCB]10.1016/j.neuroimage.2004.09.023CrossRefGoogle ScholarPubMed
Smith, E. E. & Jonides, J. (1997) Working memory: A view from neuroimaging. Cognitive Psychology 33:5-42. [aCB]10.1006/cogp.1997.0658CrossRefGoogle ScholarPubMed
Smith, E. E. & Jonides, J. (1999) Storage and executive processes in the frontal lobes. Science 283:1657-61. [rCB, GCB]10.1126/science.283.5408.1657CrossRefGoogle ScholarPubMed
Smith, E. E., Jonides, J. & Koeppe, R. A. (1996) Dissociating verbal and spatial working memory using PET. Cerebral Cortex 6:11-20. [aCB]10.1093/cercor/6.1.11CrossRefGoogle ScholarPubMed
Snyderman, M. & Rothman, S. (1987) Survey of expert opinion on intelligence and aptitude testing. American Psychologist 42:137-44. [DG]10.1037/0003-066X.42.2.137CrossRefGoogle Scholar
Spearman, C. (1927) The abilities of man: Their nature and measurement. Macmillan. [aCB]Google Scholar
Sperber, D. (2000) Metarepresentations in evolutionary perspective. In: Metarepresentations: A multidisciplinary perspective, ed. Sperber, D., pp. 117-37. Oxford University Press. [KES]10.1093/oso/9780195141146.003.0005CrossRefGoogle Scholar
Stanovich, K. E. (2004) The robots rebellion: Finding meaning in the age of Darwin. University of Chicago Press. [KES]10.7208/chicago/9780226771199.001.0001CrossRefGoogle Scholar
Stanovich, K. E., Siegel, L. S. & Gottardo, A. (1997) Converging evidence for phonological and surface subtypes of reading disability. Journal of Educational Psychology 89:114-27. [aCB]10.1037/0022-0663.89.1.114CrossRefGoogle Scholar
Steels, L. & Belpaeme, T. (2005) Coordinating perceptually grounded categories through language. A case study for colour. Behavioral and Brain Sciences 28(6):469-89. [EST]10.1017/S0140525X05000087CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1996) Successful intelligence: How practical and creative intelligence determine success in life. Simon and Schuster. [aCB]Google Scholar
Sternberg, R. J. (2002) Individual differences in cognitive development. In: Blackwell handbook of childhood cognitive development, ed. Goswami, U., pp. 600-19. Blackwell. [RMF]10.1002/9780470996652.ch27CrossRefGoogle Scholar
Sternberg, R. & Grigorenko, E., eds. (2002) The general factor of intelligence: How general is it? Erlbaum. [aCB]10.4324/9781410613165CrossRefGoogle Scholar
Sternberg, R. J., Grigorenko, E. L., Ngorosho, D., Tantufuye, E., Mbise, A., Nokes, C., Jukes, M. & Bundy, D. A. (2002) Assessing intellectual potential in rural Tanzanian school children. Intelligence 30:141-62. [aCB]10.1016/S0160-2896(01)00091-5CrossRefGoogle Scholar
Stevanovski, B. & Jolicoeur, P. (2003) Attentional limitations in visual short-term memory. Poster presented at the annual convention of the Psychonomic Society, Vancouver, British Columbia, Canada, November 2003. [NC]Google Scholar
Storfer, M. D. (1990) Intelligence and giftedness: The contributions of heredity and early environment. Jossey-Bass. [MV]Google Scholar
Stuss, D. T. & Alexander, M. P. (2005) Does damage to the frontal lobes produce impairment in memory? Current Directions in Psychological Science 14:84-88. [rCB]10.1111/j.0963-7214.2005.00340.xCrossRefGoogle Scholar
Sullivan, R. M. & Gratton, A. (2002) Prefrontal cortical regulation of hypothalamic- pituitary-adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology 27:99-114. [aCB]10.1016/S0306-4530(01)00038-5CrossRefGoogle ScholarPubMed
Sundet, J. M., Barlaug, D. G. & Turjussen, T. M. (2004) The end of the Flynn effect? A study of secular trends in mean intelligence test scores of Norwegian conscripts during half a century. Intelligence 32:349-62. [MV]10.1016/S0160-2896(04)00052-2CrossRefGoogle Scholar
Süß, H. M., Oberauer, K., Wittman, W., Wilhelm, O. & Schulze, R. (2002) Working memory capacity explains reasoning ability - and a little bit more. Intelligence 30:261-88. [aCB]10.1016/S0160-2896(01)00100-3CrossRefGoogle Scholar
Sutton, S. K. & Davidson, R. J. (1997) Prefrontal brain asymmetry: A biological substrate of the behavioral approach and behavioral inhibition systems. Psychological Science 8:204-10. [arCB]10.1111/j.1467-9280.1997.tb00413.xCrossRefGoogle Scholar
Swanson, H. L. (1999) Reading comprehension and working memory in learning-disabled readers: Is the phonological loop more important than the executive system? Journal of Experimental Child Psychology 72:1-31. [aCB]10.1006/jecp.1998.2477CrossRefGoogle Scholar
Swanson, H. L. & Sachse-Lee, C. (2001) Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology 79:294-321. [aCB]10.1006/jecp.2000.2587CrossRefGoogle ScholarPubMed
Sylvester, C., Wager, T., Lacey, S., Hernandez, L., Nichols, T., Smith, E. & Jonides, J. (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357-70. [aCB]10.1016/S0028-3932(02)00167-7CrossRefGoogle ScholarPubMed
Teasdale, T. W. & Owen, D. R. (in press) A long-term rise and recent decline in intelligence test performance: The Flynn Effect in reverse. Personality and Individual Differences. [MV]Google Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P. & Kim, D. M. (2003) The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews 27:33-44. [aCB]10.1016/S0149-7634(03)00007-1CrossRefGoogle ScholarPubMed
Thompson, P., Cannon, T., Narr, K., van Erp, T., Poutanen, V., Huttunen, M., Lonnqvist, J., Standertskjold-Nordenstam, C., Kaprio, J., Khaledy, M., Dail, R., Zoumalan, C. & Toga, A. (2001) Genetic influences on brain structure. Nature Neuroscience 4:1253-58. [arCB]10.1038/nn758CrossRefGoogle ScholarPubMed
Todd, J. J. & Marois, R. (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751-54. [NC]10.1038/nature02466CrossRefGoogle ScholarPubMed
Toga, A. W. & Thompson, P. M. (2005) Genetics of brain structure and intelligence. Annual Review of Neuroscience 28:1-23. [rCB]10.1146/annurev.neuro.28.061604.135655CrossRefGoogle ScholarPubMed
Tomasello, M. (1999) The cultural origins of human cognition. Harvard University Press. [KES]Google Scholar
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B. & Gottesman, I. (2003) Socioeconomic status modifies heritability of IQ in young children. Psychological Science 14:623-28. [arCB]10.1046/j.0956-7976.2003.psci_1475.xCrossRefGoogle ScholarPubMed
Unsworth, N. & Engle, R. W. (2005) Working memory capacity and fluid abilities: Examining the correlation between operation span and Raven. Intelligence 33:67-81. [DG]10.1016/j.intell.2004.08.003CrossRefGoogle Scholar
Unsworth, N., Schrock, J. C. & Engle, R. W. (2004) Working memory capacity and the antisaccade task: Individual differences in voluntary saccade control. Journal of Experimental Psychology: Learning, Memory, and Cognition 30:1302-21. [RPH]Google ScholarPubMed
Uylings, H., Van Eden, C., De Bruin, J., Feenstra, M. & Pennartz, C., eds. (2000) Progress in brain research, vol. 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures. Elsevier. [aCB]Google Scholar
Van Eden, C. G. & Buijs, R. M. (2000) Functional neuroanatomy of the prefrontal cortex: Autonomic interactions. In: Progress in brain research, vol. 126, Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures, ed. Uylings, H., Van Eden, C., De Bruin, J., Feenstra, M. & Pennartz, C., pp. 49-62. Elsevier. [aCB]Google Scholar
Van der Werf, Y., Scheltens, P., Lindeboom, J., Witter, M., Uylings, H. & Jolles, J. (2003) Deficits of memory, executive functioning and attention following infarction in the thalamus: A study of 22 cases with localised lesions. Neuropsychologia 41:1330-44. [aCB]10.1016/S0028-3932(03)00059-9CrossRefGoogle ScholarPubMed
Van der Werf, Y., Witter, M., Uylings, H. & Jolles, J. (2000) Neuropsychology of infarctions in the thalamus: A review. Neuropsychologia 38:613-27. [aCB]10.1016/S0028-3932(99)00104-9CrossRefGoogle ScholarPubMed
Varela, F. J., Thompson, E. & Rosch, E. (1991) The embodied mind, cognitive science and human experience. MIT Press. [EST]10.7551/mitpress/6730.001.0001CrossRefGoogle Scholar
Vazquez, D. M. (1998) Stress and the developing limbic-hypothalamic- pituitary-adrenal axis. Psychoneuroendocrinology 23:663-700. [aCB]10.1016/S0306-4530(98)00029-8CrossRefGoogle ScholarPubMed
Vernon, P. (1964) The structure of human abilities. Methuen. [WJ]Google Scholar
Vernon, P. (1965) Ability factors and environmental influences. American Psychologist 20:723-33. [rCB, WJ]10.1037/h0021472CrossRefGoogle ScholarPubMed
Viskontas, I. V., Holyoak, K. J. & Knowlton, B. J. (in press) Integrating multiple relations: Working memory capacity constrains reasoning ability in older adults. Thinking and Reasoning. [IVV]Google Scholar
Viskontas, I. V., Morrison, R. G., Holyoak, K. J., Hummel, J. E. & Knowlton, B. J. (2004) Relational integration, inhibition and analogical reasoning in older adults. Psychology and Aging 19:581-91. [IVV]10.1037/0882-7974.19.4.581CrossRefGoogle ScholarPubMed
Vogel, E. K. & Machizawa, M. G. (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:749-51. [NC]10.1038/nature02447CrossRefGoogle ScholarPubMed
Voracek, M. (2002) Drei Studien zum Mehrfachwahl-Wortschatz-Intelligenztest (MWT): Test-Reanalyse, Lynn-Flynn-Effekt, und Phase-IV-Studie [Three studies on the multiple-choice vocabulary test (MWT): Test reanalysis, Lynn - Flynn effect, and Phase-IV study]. Unpublished doctoral dissertation, University of Vienna. [MV]Google Scholar
Vygotsky, L. S. (1978) Mind in society: The development of higher psychological processes. Harvard University Press. [RMF]Google Scholar
Wahlsten, D. (1996) The intelligence of heritability. Canadian Psychology 35:244-58. [rCB]10.1037/0708-5591.35.3.244CrossRefGoogle Scholar
Wahlsten, D. (1997) The malleability of intelligence is not constrained by heritability. In: Intelligence, genes and success, ed. Devlin, B., Feinberg, S., Resnick, D. & Roeder, K., pp. 71-87. Springer-Verlag. [aCB]10.1007/978-1-4612-0669-9_4CrossRefGoogle Scholar
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Back-Madruga, C., McPherson, S., Masterman, D., Chow, T., Cummings, J. L. & Miller, B. L. (2004) Relational integration and executive function in Alzheimer's disease. Neuropsychology 18:296-305. [IVV]10.1037/0894-4105.18.2.296CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., Santos, M., Thomas, C. R. & Miller, B. L. (1999) A system for relational reasoning in the human prefrontal cortex. Psychological Science 10:119-25. [aCB, NC, IVV]10.1111/1467-9280.00118CrossRefGoogle Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M. & Meany, M. J. (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7:847-54. [WJ]10.1038/nn1276CrossRefGoogle ScholarPubMed
Wechsler, D. (1997) WAIS-III administration and scoring manual. Psychological Corporation. [JCK]Google Scholar
Wechsler, D. (2002) The Wechsler Preschool and Primary Scale of Intelligence, 3rd edition. Psychological Corporation. [JCK]Google Scholar
Wechsler, D. (2003) The Wechsler Intelligence Scale for Children, 4th edition. Psychological Corporation. [JCK]Google Scholar
Weinberger, D. R., Berman, K. F., Suddath, R. & Torrey, E. F. (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry 149:890-97. [aCB]Google ScholarPubMed
Weinberger, D. R., Egan, M. F., Bertolino, A., Callicott, J. H., Mattay, V. S., Lipska, B. K., Berman, K. F. & Goldberg, T. E. (2001) Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50:825-44. [aCB]10.1016/S0006-3223(01)01252-5CrossRefGoogle ScholarPubMed
Weiser, M., Noy, S., Kaplan, Z., Reichenberg, A., Yasvitsky, R., Nahon, D., Grotto, I. & Knobler, H. (2003) Generalized cognitive impairment in male adolescents with schizotypal personality disorder. American Journal of Medical Genetics 116B:36-40. [aCB]Google ScholarPubMed
Welsh, M. C. & Pennington, B. F. (1988) Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology 4:199-230. [aCB]10.1080/87565648809540405CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F. & Groisser, D. B. (1991) A normative developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology 7:131-49. [aCB]10.1080/87565649109540483CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F., Ozonoff, S., Rouse, B. & McCabe, E. R. B. (1990) Neuropsychology of early treated phenylketonuria: Specific executive function deficits. Child Development 61:1697-713. [aCB]10.2307/1130832CrossRefGoogle ScholarPubMed
West, R. L. (1996) An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin 120:272-92. [aCB]10.1037/0033-2909.120.2.272CrossRefGoogle ScholarPubMed
Whalen, P. J. (1998) Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Current Directions in Psychological Science 7:177-88. [aCB]10.1111/1467-8721.ep10836912CrossRefGoogle Scholar
Whimbey, A. E. & Dennenberg, V. H. (1967) Experimental programming of life histories: The factor structure underlying experimentally created individual differences. Behaviour 29:296-314. [aCB]10.1163/156853967X00163CrossRefGoogle ScholarPubMed
Whitehead, A. N. (1925/1948) Science and the modern world. Macmillan. [rCB]Google Scholar
Wicherts, J., Dolan, C., Hessen, D., Oosterveld, P., van Baal, C., Boomsma, D. & Span, M. (2004) Are intelligence tests measurement invariant over time? Investigating the nature of the Flynn effect. Intelligence 32:509-37. [aCB, JRF]10.1016/j.intell.2004.07.002CrossRefGoogle Scholar
Wilke, M., Sohn, J. H., Weber Byars, A. M. & Holland, S. K. (2003) Bright spots: Correlations of gray matter volume with IQ in a normal pediatric population. NeuroImage 20:202-15. [aCB, MW]10.1016/S1053-8119(03)00199-XCrossRefGoogle Scholar
Willcutt, E. G., Pennington, B. F., Boada, R., Ogline, J. S., Tunick, R. A., Chhabildas, N. A. & Olson, R. K. (2001) A comparison of the cognitive deficits in reading disability and attention-deficit/hyperactivity disorder. Journal of Abnormal Psychology 110:157-72. [aCB]10.1037/0021-843X.110.1.157CrossRefGoogle ScholarPubMed
Williams, W. M. (1998) Are we raising smarter children today? School- and home-related influences on IQ. In: The rising curve: Long term gains in IQ and related measures, ed. Neisser, U., pp. 125-54. American Psychological Association. [aCB]10.1037/10270-004CrossRefGoogle Scholar
Woodcock, R. W. (1990) Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment 8:231-58. [aCB, JCK]10.1177/073428299000800303CrossRefGoogle Scholar
Woodcock, R. W., McGrew, K. S. & Mather, N. (2001) Woodcock-Johnson III. Riverside. [JCK]Google Scholar
Wytek, R., Opgenoorth, E. & Presslich, O. (1984) Development of a new shortened version of Raven's matrices test for application and rough assessment of present intellectual capacity within psychopathological investigation. Psychopathology 17:49-58. [MV]10.1159/000284003CrossRefGoogle ScholarPubMed
Yang, C. R., Seamans, J. K. & Gorelova, N. (1999) Developing a neuronal model of the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161-94. [aCB]10.1016/S0893-133X(98)00112-2CrossRefGoogle ScholarPubMed
Zelazo, P. D. (2004) The development of conscious control in childhood. Trends in Cognitive Sciences 8:12-17. [RMF]10.1016/j.tics.2003.11.001CrossRefGoogle ScholarPubMed
Zelazo, P. D., Qu, L. & Muller, U. (2005) Hot and cool aspects of executive function: Relations in early development. In: Young childrens cognitive development: Interrelationships among executive functioning, working memory, verbal ability, and theory of mind, ed. Schneider, W., Schumann-Hengsteler, R. & Sodian, B., pp. 71-93. Erlbaum. [RMF]Google Scholar
Zigler, E. (1999) The individual with mental retardation as a whole person. In: Personality development in individuals with mental retardation, ed. Zigler, E. & Bennett-Gates, D., pp. 1-16. Cambridge University Press. [aCB]Google Scholar
Zigler, E., Abelson, W. D. & Seitz, V. (1973) Motivational factors in the performance of economically disadvantaged children on the Peabody Picture Vocabulary Test. Child Development 44:294-303. [aCB]10.2307/1128050CrossRefGoogle Scholar
Zook, N., Welsh, M. & Ewing, V. (in press) Performance of healthy, older adults on the Tower of London - Revised: Comparisons with the WAIS-III Vocabulary and Matrix Reasoning Subtests. Journal of Aging, Neuropsychology and Cognition. [rCB, NAZ]Google Scholar