Hostname: page-component-7dd5485656-pnlb5 Total loading time: 0.001 Render date: 2025-11-02T19:25:52.150Z Has data issue: false hasContentIssue false

DYNAMICS OF NONLOCAL KURAMOTO–SIVASHINSHY EQUATIONS WITH MULTIPLICATIVE WHITE NOISE

Published online by Cambridge University Press:  23 October 2025

XIAOPENG CHEN*
Affiliation:
Department of Mathematics, Shantou University , Guangdong, Shantou 515063, China; e-mail: 21hgao@stu.edu.cn
HAN GAO
Affiliation:
Department of Mathematics, Shantou University , Guangdong, Shantou 515063, China; e-mail: 21hgao@stu.edu.cn

Abstract

We study the long time dynamic properties of the nonlocal Kuramoto–Sivashinsky (KS) equation with multiplicative white noise. First, we consider the dynamic properties of the stochastic nonlocal KS equation via a transformation into the associated conjugated random differential equation. Next, we prove the existence and uniqueness of solution for the conjugated random differential equation in the theory of random dynamical systems. We also establish the existence and uniqueness of a random attractor for the stochastic nonlocal equation.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This paper is dedicated to Professor Tony Roberts

References

Arnold, L., Random dynamical systems (Springer, Berlin–Heidelberg, 1998); doi:10.1007/978-3-662-12878-7.CrossRefGoogle Scholar
Bo, L., Shi, K. and Wang, Y., “On a nonlocal stochastic Kuramoto–Sivashinsky equation with jumps”, Stoch. Dyn. 7 (2007) 439457; doi:10.1142/S0219493722400378.CrossRefGoogle Scholar
Caraballo, T., Herrera-Cobos, M. and Marín-Rubio, P., “Long-time behaviour of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms”, Nonlinear Anal. 121 (2015) 318; doi:10.1016/j.na.2014.07.011.CrossRefGoogle Scholar
Caraballo, T., Kloeden, P. E. and Schmalfuss, B., “Exponentially stable stationary solutions for stochastic evolution equations and their perturbation”, Appl. Math. Optim. 50 (2004) 183207; doi:10.1007/s00245-004-0802-1.CrossRefGoogle Scholar
Crauel, H. and Flandoli, F., “Attractors for random dynamical systems”, Probab. Theory Related Fields 100 (1994) 365393; doi:10.1007/BF01193705.CrossRefGoogle Scholar
Duan, J. and Ervin, V. J., “Dynamics of a nonlocal Kuramoto–Sivashinsky equation”, J. Differential Equations 143 (1998) 243266; doi:10.1006/jdeq.1997.3371.CrossRefGoogle Scholar
Duan, J., Lu, K. and Schmalfuss, B., “Invariant manifolds for stochastic partial differential equations”, Ann. Probab. 31 (2003) 21092135; doi:10.1214/aop/1068646380.CrossRefGoogle Scholar
Fan, S. and Chen, X., “Mean asymptotic behavior for stochastic Kuramoto–Sivashinsky equation in Bochner spaces”, Stoch. Dyn. 22 (2022) article ID: 2240037; doi:10.1142/S021949372240037X.CrossRefGoogle Scholar
Gess, B., Liu, W. and Röckner, M., “Random attractors for a class of stochastic partial differential equations driven by general additive noise”, J. Differential Equations 251 (2011) 12251253; doi:10.1016/j.jde.2011.02.013.CrossRefGoogle Scholar
Gess, B., Liu, W. and Schenke, A., “Random attractors for locally monotone stochastic partial differential equations”, J. Differential Equations 269 (2020) 34143455; doi:10.1016/j.jde.2020.03.002.CrossRefGoogle Scholar
Gu, A., “Weak pullback mean random attractors for stochastic evolution equations and applications”, Stoch. Dyn. 22 (2022) article ID: 2240001; doi:10.1142/S0219493722400019.CrossRefGoogle Scholar
Kinra, K. and Mohan, M. T., “Weak pullback mean random attractors for the stochastic convective Brinkman–Forchheimer equations and locally monotone stochastic partial differential equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 25 (2022) article ID: 2250005; doi:10.1142/S0219025722500051.CrossRefGoogle Scholar
Kloeden, P. E. and Lorenz, T., “Mean-square random dynamical systems”, J. Differential Equations 253 (2012) 14221438; doi:10.1016/j.jde.2012.05.016.CrossRefGoogle Scholar
Kuramoto, Y. and Tsuzuki, T., “On the formation of dissipative structures in reaction–diffusion systems”, PTEP. Prog. Theor. Exp. Phys. 54 (1975) 687699; doi:10.1143/PTPS.54.687.CrossRefGoogle Scholar
Li, Y. and Xia, H., “Continuity in expectation of odd random attractors for stochastic Kuramoto–Sivashinsky equation”, Discrete Contin. Dyn. Syst. Ser. B 29 (2024) 11051127; doi:10.3934/dcdsb.2023125.CrossRefGoogle Scholar
Liu, W., “Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators”, Nonlinear Anal. Theory Methods Appl. 74 (2011) 75437561; doi:10.1016/j.na.2011.08.018.CrossRefGoogle Scholar
Liu, W. and Röckner, M., “SPDE in Hilbert space with locally monotone coefficients”, J. Funct. Anal. 259 (2010) 29022922; doi:10.1016/j.jfa.2010.05.012.CrossRefGoogle Scholar
Liu, W. and Röckner, M., “Local and global well-posedness of SPDE with generalized coercivity conditions”, J. Differential Equations 254 (2013) 725755; doi:10.1016/j.jde.2012.09.014.CrossRefGoogle Scholar
Liu, W. and Röckner, M., Stochastic partial differential equations: an introduction (Springer International Publishing, Cham–Switzerland, 2015); doi:10.1007/978-3-319-22354-4.CrossRefGoogle Scholar
Wang, B., “Weak pullback attractors for mean random dynamical systems in Bochner spaces”, J. Dynam. Differential Equations 31 (2019) 21772204; doi:10.1007/s10884-018-9696-5.CrossRefGoogle Scholar
Wang, B., “Mean-square random invariant manifolds for stochastic differential equations”, Discrete Contin. Dyn. Syst. Ser. A 41 (2021) 14491468; doi:10.3934/dcds.2020324.CrossRefGoogle Scholar
Wu, W., Cui, S. and Duan, J., “Global well-posedness of the stochastic generalized Kuramoto–Sivashinsky equation with multiplicative noise”, Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 566584; doi:10.1007/s10255-018-0769-3.CrossRefGoogle Scholar
Xu, J. and Caraballo, T., “Dynamics of stochastic nonlocal partial differential equations”, Eur. Phys. J. Plus 136 (2021) 849; doi:10.1140/epjp/s13360-021-01818-w.CrossRefGoogle Scholar
Xu, J. and Caraballo, T., “Dynamics of stochastic nonlocal reaction-diffusion equations driven by multiplicative noise”, Anal. Appl. 21(3) (2023) 597633; doi:10.1142/S0219530522500075.CrossRefGoogle Scholar
Yang, D., “Random attractors for the stochastic Kuramoto–Sivashinsky equation”, Stoch. Anal. Appl. 24 (2006) 12851303; doi:10.1080/07362990600991300.CrossRefGoogle Scholar
Yang, D., “Dynamics for the stochastic nonlocal Kuramoto–Sivashinsky equation”, J. Math. Anal. Appl. 330 (2007) 550570; doi:10.1016/j.jmaa.2006.07.091.CrossRefGoogle Scholar