Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-12-01T16:21:06.566Z Has data issue: false hasContentIssue false

AN ANALYSIS OF RIEMANN SOLUTIONS FOR THE NONHOMOGENEOUS AW–RASCLE MODEL OF TRAFFIC FLOW WITH THE BORN–INFELD EQUATION OF STATE

Published online by Cambridge University Press:  01 December 2025

SHIWEI LI*
Affiliation:
College of Science, Henan University of Engineering , Zhengzhou, 451191, P. R. China

Abstract

This paper focuses on the Aw–Rascle model of traffic flow for the Born–Infeld equation of state with Coulomb-like friction, whose Riemann problem is solved with the variable substitution method. Four kinds of nonself-similar solutions are derived. The delta shock occurs in the solutions, although the system is strictly hyperbolic with a genuinely nonlinear characteristic field and a linearly degenerate characteristic field. The generalized Rankine–Hugoniot relation and entropy condition for the delta shock are clarified. The delta shock can be used to describe the serious traffic jam. Under the impact of the friction term, the rarefaction wave (R), shock wave (S), contact discontinuity (J) and delta shock ($\delta $) are bent into parabolic curves. Furthermore, it is proved that the $S+J$ solution and $\delta $ solution of the nonhomogeneous Aw–Rascle model tend to be the $\delta $ solution of the zero-pressure Euler system with friction; the $R+J$ solution and $R+\mbox {Vac}+J$ solution tend to be the vacuum solution of the zero-pressure Euler system with friction.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aw, A. and Rascle, M., “Resurrection of ‘second order’ models of traffic flow”, SIAM J. Appl. Math. 60 (2000) 916938; doi:10.1137/S0036139997332099.CrossRefGoogle Scholar
Bilic, N., Tupper, G. B. and Viollier, R. D., “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas”, Phys. Lett. B 535 (2002) 1721; doi:10.1016/S0370-2693(02)01716-1.CrossRefGoogle Scholar
Brenier, Y. and Grenier, E., “Sticky particles and scalar conservation laws”, SIAM J. Numer. Anal. 35 (1998) 23172328; doi:10.1137/S0036142997317353.CrossRefGoogle Scholar
Chaplygin, S., “On gas jets”, Sci. Mem. Moscow Univ. Math. Phys. 21 (1904) 1121.Google Scholar
Chen, G. and Liu, H., “Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations”, SIAM J. Math. Anal. 34 (2003) 925938; doi:10.1137/S0036141001399350.CrossRefGoogle Scholar
Chen, S., Gibbons, G. W. and Yang, Y., “Explicit integration of Friedmann’s equation with nonlinear equations of state”, J. Cosmol. Astropart. Phys. 2015 (2015) 020; doi:10.1088/1475-7516/2015/05/020.CrossRefGoogle Scholar
Cheng, H. and Yang, H., “Approaching Chaplygin pressure limit of solutions to the Aw–Rascle model”, J. Math. Anal. Appl. 416 (2014) 839854; doi:10.1016/j.jmaa.2014.03.010.CrossRefGoogle Scholar
Danilov, V. and Shelkovich, V., “Dynamics of propagation and interaction of delta-shock waves in conservation laws systems”, J. Differential Equations 211 (2005) 333381; doi:10.1016/j.jde.2004.12.011.CrossRefGoogle Scholar
De la cruz, R. and Juajibioy, J., “Delta shock solution for a generalized zero-pressure gas dynamics system with linear damping”, Acta Appl. Math. 177 (2022) 125; doi:10.1007/s10440-021-00463-w.CrossRefGoogle Scholar
Ding, X. and Wang, Z., “Existence and uniqueness of discontinuous solutions defined by Lebesgue-Stieltjes integral”, Sci. China Ser. A 39 (1996) 807819; doi:10.1360/ya1996-39-8-807.Google Scholar
Gao, L., Qu, A. and Yuan, H., “Delta shock as free piston in pressureless Euler flows”, Z. Angew. Math. Phys. 73 (2022) 114; doi:10.1007/s00033-022-01754-4.CrossRefGoogle Scholar
Guo, L., Li, T. and Yin, G., “The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term”, Commun. Pure Appl. Anal. 16 (2017) 295309; doi:10.3934/cpaa.2017014.CrossRefGoogle Scholar
Guo, L., Li, T. and Yin, G., “The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term”, J. Math. Anal. Appl. 455 (2017) 127140; doi:10.1016/j.jmaa.2017.05.048.CrossRefGoogle Scholar
Hugoniot, H., “Sur la propagation du mouvement daus les corps et specialment daus les gas parfaits”, J. Éc. polytech. Math. 58 (1889) 80; https://www.bibsonomy.org/bibtex/1f4aa2de88a0e66274b7e7002cd85bc0f/gdmcbain.Google Scholar
Kalisch, H. and Mitrovic, D., “Singular solutions of a fully nonlinear $2\times 2$ system of conservation laws”, Proc. Edinb. Math. Soc. (2) 55 (2012) 711729; doi:10.1017/S0013091512000065.CrossRefGoogle Scholar
Kranzer, H. C. and Keyfitz, B. L., “A strictly hyperbolic system of conservation laws admitting singular shocks”, in Nonlinear evolution equations that change type (eds. Keyfitz, B. L. and Shearer, M.) (Springer, Berlin, 1990) 107125; https://conservancy.umn.edu/server/api/core/bitstreams/294c9734-c179-4316-b575-76c250ebb7bd/content.10.1007/978-1-4613-9049-7_9CrossRefGoogle Scholar
Le Floch, P., “An existence and uniqueness result for two nonstrictly hyperbolic systems”, in: Nonlinear evolution equations that change type, Volume 27 of IMA Vol. Math. Appl. (eds. B. L. Keyfitz and M. Shearer) (Springer, New York, 1990) pp. 126138; doi:10.1007/978-1-4613-9049-7_10.CrossRefGoogle Scholar
Li, J., Zhang, T. and Yang, S., The two-dimensional Riemann problem in gas dynamics, Volume 98 of Pitman Monogr. Surv. Pure Appl. Math. (Longman, New York, 1998); doi:10.1201/9780203719138.Google Scholar
Li, S., “Riemann solutions of the anti-Chaplygin pressure Aw–Rascle model with friction”, J. Math. Phys. 63 (2022) Article ID 121509; doi:10.1063/5.0092054.CrossRefGoogle Scholar
Li, S. and Wang, H., “Delta-shocks and vacuums in Riemann solutions to the Umami Chaplygin Aw–Rascle model”, Chaos Solitons Fractals 188 (2024) Article ID 115513; doi:10.1016/j.chaos.2024.115513.CrossRefGoogle Scholar
Li, S., Wang, Q. and Yang, H., “Riemann problem for the Aw–Rascle model of traffic flow with general pressure”, Bull. Malays. Math. Sci. Soc. 43 (2020) 37573775; doi:10.1007/s40840-020-00892-0.CrossRefGoogle Scholar
Li, X. and Shen, C., “The asymptotic behavior of Riemann solutions for the Aw–Rascle–Zhang traffic flow model with the polytropic and logarithmic combined pressure term”, Appl. Anal. 104 (2025) 544563; doi:10.1080/00036811.2024.2373411.CrossRefGoogle Scholar
Pan, L. and Han, X., “The Aw–Rascle traffic model with Chaplygin pressure”, J. Math. Anal. Appl. 401 (2013) 379387; doi:10.1016/j.jmaa.2012.12.022.CrossRefGoogle Scholar
Pang, Y., Shao, L., Wen, Y. and Ge, J., “The ${\delta}^{\prime }$ wave solution to a totally degenerate system of conservation laws”, Chaos Solitons Fractals 161 (2022) Article ID 112302; doi:10.1016/j.chaos.2022.112302.CrossRefGoogle Scholar
Panov, E. Yu. and Shelkovich, V. M., “ ${\delta}^{\prime }$ -shock waves as a new type of solutions to system of conservation laws”, J. Differential Equations 228 (2006) 4986; doi:10.1016/j.jde.2006.04.004.CrossRefGoogle Scholar
Qu, A., Yuan, H. and Zhao, Q., “Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge”, ZAMM Z. Angew. Math. Mech. 100 (2020) Article ID e201800225; doi:10.1002/zamm.201800225.CrossRefGoogle Scholar
Rankine, W. M., “On the thermodynamic theory of waves of finite longitudinal disturbance”, Philos. Trans. Roy. Soc. A 160 (1870) 277288; doi:10.1098/rstl.1870.0015.Google Scholar
Sen, A. and Raja Sekhar, T., “The limiting behavior of the Riemann solution to the isentropic Euler system for the logarithmic equation of state with a source term”, Math. Methods Appl. Sci. 44 (2021) 72077227; doi:10.1002/mma.7254.CrossRefGoogle Scholar
Shandarin, F. and Zeldovich, B., “The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Modern Phys. 61 (1989) 185220; doi:10.1103/RevModPhys.61.185.CrossRefGoogle Scholar
Shao, Z., “The Riemann problem for a traffic flow model”, Phys. Fluids 35 (2023) Article ID 036104; doi:10.1063/5.0141732.CrossRefGoogle Scholar
Shen, C., “The Riemann problem for the pressureless Euler system with Coulomb-like friction term”, IMA J. Appl. Math. 81 (2016) 7699; doi:10.1093/imamat/hxv028.Google Scholar
Shen, C., “The Riemann problem for the Chaplygin gas equations with a source term”, Z. Angew. Math. Mech. 96 (2016) 681695; doi:10.1002/zamm.201500015.CrossRefGoogle Scholar
Shen, C. and Sun, M., “Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw–Rascle model”, J. Differential Equations 249 (2010) 30243051; doi:10.1016/j.jde.2010.09.004.CrossRefGoogle Scholar
Shen, C. and Sun, M., “The Riemann problem for the one-dimensional isentropic Euler system under the body force with varying gamma law”, Phys. D 448 (2023) Article ID 133731; doi:10.1016/j.physd.2023.133731.CrossRefGoogle Scholar
Sheng, S. and Shao, Z., “The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-like friction term”, J. Math. Phys. 60 (2019) Article ID 101504; doi:10.1063/1.5108863.CrossRefGoogle Scholar
Sheng, W. and Zeng, Y., “Generalized $\delta$ -entropy condition to Riemann solutions for Chaplygin gas in traffic model”, Appl. Math. Mech. (English Ed.) 36 (2015) 353364; doi:10.1007/s10483-015-1915-6.CrossRefGoogle Scholar
Sheng, W. and Zhang, T., “The Riemann problem for transportation equation in gas dynamics”, Mem. Amer. Math. Soc. 137 (1999) 177; doi:10.1090/memo/0654.Google Scholar
Sun, M., “Interactions of elementary waves for the Aw–Rascle model”, SIAM J. Appl. Math. 69 (2009) 15421558; doi:10.1137/080731402.CrossRefGoogle Scholar
Tan, D. and Zhang, T., “Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws I. Four-J cases, II. Initial data involving some rarefaction waves”, J. Differential Equations 111 (1994) 203282; doi:10.1006/jdeq.1994.1081.CrossRefGoogle Scholar
Tan, D., Zhang, T. and Zheng, Y., “Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws”, J. Differential Equations 112 (1994) 132; doi:10.1006/jdeq.1994.1093.CrossRefGoogle Scholar
Tsien, H. S., “Two dimensional subsonic flow of compressible fluids”, J. Aeronaut. Sci. 6 (1939) 399407; doi:10.2514/2.7045.CrossRefGoogle Scholar
Wang, G., “The Riemann problem for Aw–Rascle traffic flow with negative pressure”, Chinese Ann. Math. Ser. A 35 (2014) 7382; https://www.semanticscholar.org/paper/The-Riemann-Problem-for-the-Aw-Rascle-Traffic-Flow-Guodon/34cc586a4faa89c9598bff0a38e7071f9df9723a.Google Scholar
Weinan, E., Rykov, Yu. G. and Sinai, Ya. G., “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys. 177 (1996) 349380; doi:10.1007/BF02101897.CrossRefGoogle Scholar
Yang, Y., “Electromagnetic asymmetry, relegation of curvature singularities of charged black holes, and cosmological equations of state in view of the Born–Infeld theory”, Classical Quantum Gravity 39 (2022) Article ID 195007; doi:10.1088/1361-6382/ac840b.CrossRefGoogle Scholar
Yang, Y., “Dyonic matter equations, exact point-source solutions, and charged black holes in generalized Born–Infeld theory”, Phys. Rev. D 107 (2023) Article ID 085007; doi:10.1103/PhysRevD.107.085007.CrossRefGoogle Scholar
Yin, G. and Chen, J., “Existence and stability of Riemann solution to the Aw–Rascle model with friction”, Indian J. Pure Appl. Math. 49 (2018) 671688; doi:10.1007/s13226-018-0294-3.CrossRefGoogle Scholar
Yin, G. and Sheng, W., “Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases”, J. Math. Anal. Appl. 355 (2009) 594605; doi:10.1016/j.jmaa.2009.01.075.CrossRefGoogle Scholar
Zhang, Q., “The Riemann solution to the Chaplygin pressure Aw–Rascle model with Coulomb-like friction and its vanishing pressure limit”, Preprint, 2016, arXiv:1612.08533.Google Scholar
Zhang, Y. and Zhang, Y., “Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term”, Comm. Pure Appl. Anal. 18 (2019) 15231545; doi:10.3934/cpaa.2019073.CrossRefGoogle Scholar