Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-11-21T11:30:32.480Z Has data issue: false hasContentIssue false

OPTIMAL CONTROL PROBLEMS GOVERNED BY MARGUERRE–VON KÁRMÁN EQUATIONS

Published online by Cambridge University Press:  01 January 2025

MOHAMMED EL AMINE RIAHI
Affiliation:
Laboratory of Applied Mathematics, Faculty of Mathematics and Material Sciences, Kasdi Merbah Ouargla University , Algeria e-mail: riahi.math@gmail.com
ABDERREZAK GHEZAL*
Affiliation:
Laboratory of Applied Mathematics, Faculty of Mathematics and Material Sciences, Kasdi Merbah Ouargla University , Algeria e-mail: riahi.math@gmail.com

Abstract

We consider the Marguerre–von Kármán equations that model the deformation of a thin, nonlinearly elastic, shallow shell, subjected to a specific class of boundary conditions of von Kármán’s type. Next, we reduce these equations to a single equation with a cubic operator following Berger’s classical method, whose second member depends on the function defining the middle surface of the shallow shell and the resultant of the vertical forces acting on the shallow shell. We also prove the existence and uniqueness of a weak solution to the reduced equation. Then, we prove the existence theorem for the optimal control problem governed by Marguerre–von Kármán equations, with a control variable on the resultant of the vertical forces. Using the Fréchet differentiability of the state function with respect to the control variable, we prove the uniqueness of the optimal control and derive the necessary optimality condition. As a result, this work addresses the more general geometry of Marguerre–von Kármán shallow shells to study the quadratic cost optimal control problems governed by these equations.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bendob, T. and Ghezal, A., “On the bifurcation of solutions to Marguerre–von Kármán equations”, Z. Anal. Anwend. 42(3/4) (2023) 331358; doi:10.4171/zaa/1738.CrossRefGoogle Scholar
Berger, M. S., “On von Kármán’s equations and the buckling of a thin elastic plate. I. The clamped plate”, Comm. Pure Appl. Math. 20(4) (1967) 687719; doi:10.1002/cpa.3160200405.CrossRefGoogle Scholar
Berger, M. S., Nonlinearity and functional analysis (Academic Press, New York, 1977), https://shop.elsevier.com/books/nonlinearity-and-functional-analysis/berger/978-0-12-090350-4.Google Scholar
Berger, M. S. and Fife, P. C., “On von Kármán’s equations and the buckling of a thin elastic plate”, Bull. Amer. Math. Soc. 72 (1966) 10061011; doi:10.1090/S0002-9904-1966-11620-8.CrossRefGoogle Scholar
Bock, I., “On nonstationary von Kármán equations”, ZAMM Z. Angew. Math. Mech. 76 (1996) 559571; doi:10.1002/zamm.19960761006.CrossRefGoogle Scholar
Bock, I., Hlaváček, I. and Lovíšek, J., “On the optimal control problem governed by the equations of von Kármán. I. The homogeneous Dirichlet boundary conditions”, Aplikace Matematiky 29 (1984) 303314; doi:10.21136/AM.1984.104098.Google Scholar
Bock, I., Hlaváček, I. and Lovíšek, J., “On the optimal control problem governed by the equations of von Kármán. II. Mixed boundary conditions”, Aplikace Matematiky 30 (1985) 375392; doi:10.21136/AM.1985.104164.Google Scholar
Bock, I., Hlaváček, I. and Lovíšek, J., “On the optimal control problem governed by the equations of von Kármán. III. The case of an arbitrary large perpendicular load”, Aplikace Matematiky 32 (1987) 315331; doi:10.21136/AM.1987.104262.Google Scholar
Brezis, H., “Équations et inéquations non linéaires dans les espaces vectoriels en dualité”, Ann. Inst. Fourier (Grenoble) 18 (1968) 115175; doi:10.5802/aif.280.CrossRefGoogle Scholar
Chacha, D. A., Ghezal, A. and Bensayah, A., “Existence result for a dynamical equations of generalized Marguerre–von Kármán shallow shells”, J. Elasticity 111(2) (2013), 265283; doi:10.1007/s10659-012-9402-5.CrossRefGoogle Scholar
Chowdhury, S., Dond, A. K., Nataraj, N. and Shylaja, D., “A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations”, ESAIM Math. Model. Numer. Anal. 56(5) (2022), 16551686; doi:10.1051/m2an/2022040.CrossRefGoogle Scholar
Chueshov, I. and Lasiecka, I., Von Karman evolution equations. Well-posedness and long time dynamics (Springer, New York, NY, 2010); doi:10.1007/978-0-387-87712-9.CrossRefGoogle Scholar
Ciarlet, P. G., “A justification of the von Kármán equations”, Arch. Ration. Mech. Anal. 73 (1980), 349389; doi:10.1007/BF00247674.CrossRefGoogle Scholar
Ciarlet, P. G., Mathematical elasticity, Volume II, theory of plates (North-Holland, Amsterdam, 1997); doi:10.1137/1.9781611976809.Google Scholar
Ciarlet, P. G. and Gratie, L., “Generalized von Kármán equations”, J. Math. Pures Appl. 80 (2001) 263279; doi:10.1016/S0021-7824(00)01198-3.CrossRefGoogle Scholar
Ciarlet, P. G. and Gratie, L., “From the classical to the generalized von Kármán and Marguerre–von Kármán equations”, J. Comput. Appl. Math. 190(1–2) (2006) 470486; doi:10.1016/j.cam.2005.04.008.CrossRefGoogle Scholar
Ciarlet, P. G. and Paumier, J. C., “A justification of the Marguerre–von Kármán equations”, Comput. Mech. 1 (1986) 177202; doi:10.1007/BF00272623.CrossRefGoogle Scholar
Ciarlet, P. G. and Rabier, P., Les équations de von Kármán, Volume 826 of Lect. Notes in Math. (Springer, Berlin–Heidelberg, 1980); doi:10.1007/BFb0091528.CrossRefGoogle Scholar
Ghezal, A., “On the study of variational inequality of generalized Marguerre–von Kármán’s type via Leray–Schauder degree”, Topol. Methods Nonlinear Anal. 55 (2020) 369383; doi:10.12775/TMNA.2019.099.Google Scholar
Ghezal, A. and Chacha, D. A., “Justification and solvability of dynamical contact problems for generalized Marguerre–von Kármán shallow shells”, ZAMM Z. Angew. Math. Mech. 98(5) (2018), 749780; doi:10.1002/zamm.201500296.CrossRefGoogle Scholar
Gratie, L., “Unilateral problems for nonlinearly elastic plates and shallow shells”, Math. Mech. Solids 6 (2001) 343355; doi:10.1177/108128650100600308.CrossRefGoogle Scholar
Gratie, L., “Generalized Marguerre–von Kármán equations for a nonlinearly elastic shallow shell”, Appl. Anal. 81 (2002) 11071126; doi:10.1080/0003681021000029909.CrossRefGoogle Scholar
Hou, L. S. and Turner, J. C., “Finite element approximation of optimal control problems for the von Kármán equations”, Numer. Methods Partial Differential Equations 11 (1995) 111125; doi:10.1002/num.1690110109.CrossRefGoogle Scholar
Hwang, J., “Optimal control problems for a von Kármán system with long memory”, Bound. Value Probl. 87 (2016) 123; doi:10.1186/s13661-016-0594-7.Google Scholar
Hwang, J., “Bilinear minimax optimal control problems for a von Kármán system with long memory”, J. Funct. Spaces 2020 (2020) 115; doi:10.1155/2020/1859736.CrossRefGoogle Scholar
Lasiecka, I., Mathematical control theory of coupled PDEs, Volume 75 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002). doi:10.1137/1.9780898717099.CrossRefGoogle Scholar
Lasiecka, I. and Triggiani, R., Control theory for partial differential equations: continuous and approximation theories, I: abstract parabolic systems (Cambridge University Press, Cambridge, 2000); doi:10.1017/CBO9781107340848.Google Scholar
Lasiecka, I. and Triggiani, R., Control theory for partial differential equations: continuous and approximation theories, II: abstract hyperbolic-like systems over a finite time horizon (Cambridge University Press, Cambridge, 2000); doi:10.1017/CBO9780511574801.Google Scholar
Lions, J. L., Optimal control of systems governed by partial differential equations (Springer-Verlag, New York, 1971); doi:10.1007/978-3-642-65024-6.CrossRefGoogle Scholar
Mallik, G., Nataraj, N. and Raymond, J. P., “Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations”, ESAIM Math. Model. Numer. Anal. 52 (2018), 11371172; doi:10.1051/m2an/2018023.CrossRefGoogle Scholar
Marguerre, K., “Zur Theorie der gekrümmten Platte großer Formänderung”, in: Jahrbuch 1939 der Deutschen Academie der Luftfahrtforschung, Volume 1, 413–418 (Proceedings of the Fifth International Congress Applied Mechanics. Cambridge, MA, 1938), 93101.Google Scholar
Mechaouf, A., Ghezal, A. and Ghanem, R., “Optimal control problems governed by Marguerre–von Kármán evolution equations with long memory”, Evol. Equ. Control Theory 14 (2025) 680700; doi:10.3934/eect.2025001.CrossRefGoogle Scholar
Mezabia, M. E., Ghezal, A. and Chacha, D. A., “Asymptotic analysis of frictional contact problem for piezoelectric shallow shell”, Quart. J. Mech. Appl. Math. 72 (2019) 473499; doi:10.1093/qjmam/hbz014.CrossRefGoogle Scholar
Park, J. Y., Park, S. H. and Kang, Y. H., “Bilinear optimal control of the velocity term in a von Kármán plate equation”, ANZIAM J. 54 (2013) 291305; doi:10.1017/S1446181113000205.Google Scholar
Rao, B., “Marguerre–von Kármán equations and membrane model”, Nonlinear Anal. 24 (1995) 11311140; doi:10.1016/0362-546X(94)00226-8.CrossRefGoogle Scholar
Tröltzsch, F., Optimal control of partial differential equations: theory, methods and applications (American Mathematical Society, Providence, RI, 2010); doi:10.1090/gsm/112.Google Scholar
von Kármán, T., “Festigkeitsprobleme im Maschinenbau”, in: Mechanik (eds. Klein, F. and Müller, C.) (Vieweg+Teubner Verlag, Wiesbaden, 1907) 311385; doi:10.1007/978-3-663-16028-1_5.CrossRefGoogle Scholar
von Kármán, T. and Tsien, H., “The buckling of spherical shells by external pressure”, J. Aerosp. Sci. 7 (1939) 4350; doi:10.2514/8.1019.Google Scholar
Zeidler, E., Nonlinear functional analysis and its application, Volume IV: applications to mathematical physics (Springer-Verlag, New York, 1988); doi:10.1007/978-1-4612–0985-0.Google Scholar
Zeidler, E., Nonlinear functional analysis and its application, Volume II/B: nonlinear monotone operators (Springer-Verlag, New York, 1990); doi:10.1007/978-1-4612-0981-2.Google Scholar