Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-09-20T11:04:46.513Z Has data issue: false hasContentIssue false

Utilisation of insect-inspired blades for improvement of a commercial propeller aerodynamic performance

Published online by Cambridge University Press:  17 September 2025

Y. Zakeri Nazar
Affiliation:
School of Aerospace Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
R. Askari
Affiliation:
School of Aerospace Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
M. Masdari*
Affiliation:
School of Science & Technology, Department of Engineering, City St George’s University of London, London, UK
*
Corresponding author: M. Masdari; Email: mehran.masdari@city.ac.uk

Abstract

Bio-inspiration can be used to improve the aerodynamic performance of commercial multirotor propellers. In the present study, insect wings are used as a source of inspiration, and the effects of inspiration from insect’s wing shape on the propeller performance–, especially this effect on parameters like thrust, torque, and propeller efficiency, are investigated. Six insect species have been selected as inspiration: Hemiptera, Orthoptera, Neuroptera, Mantodea, Odonata and Hymenoptera. The analyses have been done using the numerical simulation of flow and the moving reference frame (MRF) method alongside the SST k-ω turbulence model. The simulations were carried out over a range of rotational speeds, varying from 4,000 to 8,000 rpm, for propellers with a diameter of 0.24 m. All propellers utilised the Eppler E63 airfoil. To ensure the accuracy of the present numerical simulation results, validation was done by comparing them with experimental data from the DJI Phantom-3 propeller. The results of validation showed significant agreement with the experimental data. The results indicated that the insect-inspired propellers generate higher thrust compared to conventional propellers. Additionally, for a constant thrust force, the inspired propellers exhibit lower rotational speeds. Moreover, in terms of thrust, the Hemiptera insect-inspired propeller outperforms the DJI Phantom-3 propeller, achieving a notable average improvement of 34.182%.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A. and Mohammed, F. Unmanned aerial vehicles applications in future smart cities, Technol. Forecast. Soc. Change, 2018, 153, p 119293. https://doi.org/10.1016/j.techfore.2018.05.004 Google Scholar
Sapit, A., Faiz Masjan, M. and Kariem Shater, S. Aerodynamics drone propeller analysis by using computational fluid dynamics, J. Compl. Flow, 2021, 3, pp 1216.Google Scholar
Deters, R.W., Ananda Krishnan, G.K. and Selig, M.S. Reynolds number effects on the performance of small-scale propellers, In 32nd AIAA Applied Aerodynamics Conference, 2014 https://doi.org/10.2514/6.2014-2151 CrossRefGoogle Scholar
Ramasamy, M., Johnson, B. and Leishman, J.G. Understanding the aerodynamic efficiency of a hovering micro-rotor, J. Amer. Helicop. Soc., 2008, 53, pp 412. https://doi.org/10.4050/jahs.53.412 CrossRefGoogle Scholar
Yilmaz, E. and Hu, J. CFD study of quadcopter aerodynamics at static thrust conditions, 2018.Google Scholar
Hassanalian, M., Radmanesh, M. and Sedaghat, A. Increasing flight endurance of MAVs using multiple quantum well solar cells, Int. J. Aeronaut. Space Sci., 2014, 15, pp 212217. https://doi.org/10.5139/ijass.2014.15.2.212 Google Scholar
Schömann, J. Hybrid-electric propulsion systems for small unmanned aircraft, 2014.Google Scholar
Bohorquez, F., Samuel, P., Sirohi, J., Pines, D., Rudd, L. and Perel, R. Design, analysis and hover performance of a rotary wing micro air vehicle, J. Amer. Helicop. Soc., 2003, 48, pp 80. https://doi.org/10.4050/jahs.48.80 CrossRefGoogle Scholar
Ramasamy, M., Lee, T.J. and Gordon Leishman, J. Flowfield of a rotating-wing micro air vehicle, J. Aircr., 2012, 44, pp 12361244. https://doi.org/10.2514/1.26415 CrossRefGoogle Scholar
Brandt, J. and Selig, M. Propeller performance data at low reynolds numbers, In 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011. https://doi.org/10.2514/6.2011-1255 CrossRefGoogle Scholar
Jordan, W., Deters, R.W. and Narsipur, S. Aerodynamic and aeroacoustic performance of small UAV propellers in static conditions, In AIAA AVIATION 2020 FORUM, 2020. https://doi.org/10.2514/6.2020-2595 CrossRefGoogle Scholar
Shams din, S.S. and Madzni, M.Z. Aerodynamic analysis of quadrotor UAV propeller using computational fluid dynamic, J. Compl. Flow, 2021, 3, pp 2832.Google Scholar
Deters, R., Kleinke, S. and Selig, M. Static testing of propulsion elements for small multirotor unmanned aerial vehicles, 2017. https://doi.org/10.2514/6.2017-3743 CrossRefGoogle Scholar
Hintz, C., Khanbolouki, P., Perez, A.M., Tehrani, M. and Poroseva, S. Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller, In 2018 Applied Aerodynamics Conference, 2018. https://doi.org/10.2514/6.2018-3645CrossRefGoogle Scholar
Gomez, S., Gilkey, L.N., Kaiser, B. and Poroseva, S.V. Computational analysis of a tip vortex structure shed from a bio-inspired blade, 2014. https://doi.org/10.2514/6.2014-3253CrossRefGoogle Scholar
Ning, Z., and Hu, H. An experimental study on the aerodynamic and aeroacoustic performances of a bio-inspired UAV propeller, In 35th AIAA Applied Aerodynamics Conference, 2017. https://doi.org/10.2514/6.2017-3747CrossRefGoogle Scholar
Ikeda, T., Ueda, T., Nakata, T., Noda, R., Tanaka, H., Fujii, T. and Liu, H. Morphology effects of leadingedge serrations on aerodynamic force production: An integrated study using PIV and force measurements, J. Bionic Eng., 2018, 15, pp 661672. https://doi.org/10.1007/s4223501800544 Google Scholar
Wei, Y., Xu, F., Bian, S. and Kong, D. Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration, J. Bionic Eng., 2020, 17, pp 767779. https://doi.org/10.1007/s42235-020-0054-z Google Scholar
Mozafari, M. and Masdari, M. Owl aeroacoustics: Analysis of a silent flight (In Persian), J. Sharif: Mech. Eng., 2023, J40, 39, (3), pp 99118. https://doi.org/10.24200/j40.2022.60494.1643 Google Scholar
Moslem, F., Masdari, M., Fedir, K. and Moslem, B. Experimental investigation into the aerodynamic and aeroacoustic performance of bioinspired small-scale propeller planforms, Proceedings Inst. Mech. Eng. Part G: J. Aerosp. Eng., 2022, 237, pp 7590. https://doi.org/10.1177/09544100221091322 CrossRefGoogle Scholar
Loureiro, E.V., Oliveira, N.L., Hallak, P.H., de Souza Bastos, F., Rocha, L.M., Delmonte, R.G.P. and de Castro Lemonge, A.C. Evaluation of low fidelity and CFD methods for the aerodynamic performance of a small propeller, Aerosp. Sci. Technol., 2021, 108, p 106402. https://doi.org/10.1016/j.ast.2020.106402 Google Scholar
Chevula, S., Chillamcharal, S. and Maddula, S.P. A computational design analysis of UAV’s rotor blade in low-temperature conditions for the defence applications, Int. J. Aerosp. Eng., 2021, 2021, p e8843453. https://doi.org/10.1155/2021/8843453 Google Scholar
Varki, M., Yeter, E. and Doğru, M.H. Effect of propellers numbers and horizontal distance in design of VTOL. Int. J. Mater. Eng Technol., 2022, 5, pp 2327.Google Scholar
Mahmuddin, F. Rotor blade performance analysis with blade element momentum theory, Energy Procedia., 2017, 105, pp 11231129. https://doi.org/10.1016/j.egypro.2017.03.477 Google Scholar
DJI Team, “phantom-3-standard,” DJI. https://www.dji.com (accessed 2021).Google Scholar
“Phantom-3 Standard - User Manual V 1.4,” Sep. 01, 2015.Google Scholar
Samways, M. and Deacon, C. Extinction reprieve for the ancient and imperiled dragonflies at the southern tip of Africa, 2021. https://doi.org/10.1016/B978-0-12-821139-7.00047-7 CrossRefGoogle Scholar
Flindt, R. and Springerlink. Online Service, Amazing Numbers in Biology. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.Google Scholar
Gibb, T. Contemporary insect diagnostics: The art and science of practical entomology, In Contemporary Insect Diagnostics: The Art and Science of Practical Entomology, 2014, pp 1336.Google Scholar
Liu, D., Hefler, C., Shyy, W. and Qiu, H. Implications of dragonfly’s muscle control on flapping kinematics and aerodynamics, Phys Fluids (1994), 2022, 34, p 081902. https://doi.org/10.1063/5.0097790 CrossRefGoogle Scholar
Chitsaz, N., Siddiqui, K., Marian, R. and Chahl, J. An experimental study of the aerodynamics of micro corrugated wings at low Reynolds number, Exp. Therm Fluid Sci., 2021, 121, p 110286. https://doi.org/10.1016/j.expthermflusci.2020.110286 CrossRefGoogle Scholar
Ogunwa, T., Abdullah, E. and Chahl, J. Modeling and control of an articulated multibody aircraft, Appl. Sci., 2022, 12, p 1162. https://doi.org/10.3390/app12031162 CrossRefGoogle Scholar
Outomuro, D., Adams, D.C. and Johansson, F. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach, BMC Evol. Biol., 2013, 13, p 118. https://doi.org/10.1186/1471214813118 Google ScholarPubMed
Wootton, R. Dragonfly flight: Morphology, performance and behaviour. Int. J. Odonatol., 2020, 23, pp 3139. https://doi.org/10.1080/13887890.2019.1687991 CrossRefGoogle Scholar
Norberg, R.Å. Hovering Flight of the Dragonfly Aeschna Juncea L., Kinematics and Aerodynamics. In Wu, T.YT., Brokaw, C.J., Brennen, C. (eds), Swimming and Flying in Nature. Springer1975, Boston, MA, pp 763781. https://doi.org/10.1007/978-1-4757-1326-8_19 CrossRefGoogle Scholar
Vance, J. Experimental and natural variation in hovering flight capacity in bees, Hymenoptera: Apidae, 2009. https://doi.org/10.34917/1354557 CrossRefGoogle Scholar
Belyaev, O.A. and Farisenkov, S.E. A study on allometry of wing shape and venation in insects. Part 1. Hymenoptera, Mosc. Univ. Biol. Sci. Bull., 2018, 73, pp 229235. https://doi.org/10.3103/s0096392518040028 Google Scholar
Dudley, R. and Ellington, C.P. Mechanics of forward flight in bumblebees: II. Quasi-steady lift and power requirements, J. Exp. Biol., 1990, 148, pp 5388. https://doi.org/10.1242/jeb.148.1.53 CrossRefGoogle Scholar
Golding, Y.C., Ennos, A.R. and Edmunds, M. Similarity in flight behaviour between the honeybee Apis mellifera (Hymenoptera: apidae) and its presumed mimic, the dronefly Eristalis tenax (Diptera: syrphidae), J. Exp. Biol., 2001, 204, 139145. https://doi.org/10.1242/jeb.204.1.139 CrossRefGoogle ScholarPubMed
Zakeri Nazar, Y., Askari, R. and Masdari, M. Numerical simulation and aerodynamic analysis of insect-inspired propeller planforms, Master Thesis, University of Tehran, 2023, pp 30–35.Google Scholar
Zakeri Nazar, Y., Askari, R. and Masdari, M. Enhancement of aerodynamic efficiency in a commercial propeller through bio-inspired blade design, Int. J. Mod. Phys. C., 2025. https://doi.org/10.1142/s0129183125500809 Google Scholar
Ábrahám, L. A new Creoleon sp. n. (Neuroptera: Myrmeleontidae) from Socotra (Yemen), Nat. Somogy., 2020, 35, pp 3744. https://doi.org/10.24394/natsom.2020.35.37 CrossRefGoogle Scholar
Hectonichus, Pyrgomorphidae - Phymateus karschi [Is licensed under CC BY-SA 3.0]. https://creativecommons.org/licenses/by-sa/3.0/?ref=openverse Google Scholar
Constant, J. and Pham, T. Review of the clavatus group of the lanternfly genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae), Eur. J. Taxon., 2017, 305, pp 126. https://doi.org/10.5852/ejt.2017.305 Google Scholar
Descouens, D. File: Raptrix perspicua MHNT male.jpg [Is licensed under CC BY-SA 3.0]. https://creativecommons.org/licenses/by-sa/3.0/?ref=openverse Google Scholar
Seehausen, M. New to the fauna of Hong Kong: Matrona basilaris Selys, 1853 (Odonata: Calopterygidae), IDFRep., 2014, 65, pp 35.Google Scholar
Anderson, J.D. Computational Fluid Dynamics. The basics with applications, McGraw-Hill, 1995.Google Scholar
GarofanoSoldado, A., SanchezCuevas, P.J., Heredia, G. and Ollero, A, Numericalexperimental evaluation and modelling of aerodynamic ground effect for smallscale tilted propellers at low reynolds numbers, Aerosp. Sci. Technol., 2022, 126, pp 107625. https://doi.org/10.1016/j.ast.2022.107625 CrossRefGoogle Scholar
Andersson, B., Andersson, R., Håkansson, L., Mortensen, M., Sudiyo, R. and van Wachem, B. Computational Fluid Dynamics for Engineers. Cambridge University Press, 2011, Cambridge.Google Scholar
Ansys® Fluent, Release 2021 R1, Help System, Ansys Fluent Theory Guide, ANSYS, Inc.Google Scholar
Garofano-Soldado, A., Sanchez-Cuevas, P.J., Heredia, G. and Ollero, A. Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low reynolds numbers, Aerosp. Sci. Technol., 2022, 126, p 107625. https://doi.org/10.1016/j.ast.2022.107625 Google Scholar
Han, H., Xiang, C., Xu, B. and Yu, Y. Aerodynamic performance and analysis of a hovering micro-scale shrouded rotor in confined environment, Advances Mech. Eng., 2019, 11, p 168781401882332. https://doi.org/10.1177/1687814018823327 CrossRefGoogle Scholar
Lopez, O.R., Escobar, J. and Pociña Pérez, A. Computational study of the wake of a quadcopter propeller in Hover, 2017. https://doi.org/10.2514/6.2017-3961 CrossRefGoogle Scholar
Kutty, H. and Rajendran, P. 3D CFD simulation and experimental validation of small APC slow flyer propeller blade, Aerospace, 2017, 4, p 10. https://doi.org/10.3390/aerospace4010010 Google Scholar
Schetz, J.A. and Bowersox, R.D.W. Boundary Layer Analysis. American Institute of Aeronautics and Astronautics, Reston, Va, 2012. https://doi.org/10.2514/4.868245 CrossRefGoogle Scholar
Li, Y., Yonezawa, K., Xu, R. and Liu, H. A biomimetic rotor-configuration design for optimal aerodynamic performance in quadrotor drone, J. Bionic Eng., 2021, 18, pp 824839. https://doi.org/10.1007/s42235-021-0069-0 CrossRefGoogle Scholar
Wilcox, D.C. Formulation of the k-w turbulence model revisited, AIAA J., 2008, 46, pp 28232838. https://doi.org/10.2514/1.36541 CrossRefGoogle Scholar
Menter, F. Zonal two equation K-W turbulence models for aerodynamic flows. In 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993. https://doi.org/10.2514/6.1993-2906 CrossRefGoogle Scholar