Hostname: page-component-857557d7f7-nhjpk Total loading time: 0 Render date: 2025-12-11T07:34:41.371Z Has data issue: false hasContentIssue false

Asymptotics for a multidimensional risk model with a random number of delayed claims and multivariate regularly varying distribution

Published online by Cambridge University Press:  10 December 2025

Meng Yuan*
Affiliation:
Dongbei University of Finance and Economics
Dawei Lu*
Affiliation:
Dalian University of Technology
Yu Fu*
Affiliation:
Dongbei University of Finance and Economics
*
*Postal address: School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, China.
**Postal address: School of Mathematical Sciences, Dalian University of Technology, Dalian, China.
*Postal address: School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, China.

Abstract

This paper investigates a continuous-time multidimensional risk model with stochastic returns driven by a geometric Lévy process, where each main claim is accompanied by a random number of delayed claims. By employing a framework of multivariate regular variation for claim sizes and allowing for arbitrarily dependent claim-number processes, we conduct asymptotic analyses for two types of ruin probabilities. Numerical examples are used to demonstrate the accuracy of our asymptotic estimates.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Basrak, B., Davis, R. A. and Mikosch, T. (2002). Regular variation of GARCH processes. Stochastic Process. Appl. 99, 95115.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and its Applications, Vol. 27. Cambridge University Press, Cambridge.Google Scholar
Cai, J. and Li, H. (2005). Multivariate risk model of phase type. Insurance Math. Econom. 36, 137152.CrossRefGoogle Scholar
Charpentier, A. and Segers, J. (2009). Tails of multivariate Archimedean copulas. J. Multivariate Anal. 100, 15211537.10.1016/j.jmva.2008.12.015CrossRefGoogle Scholar
Chen, Y. and Yuen, K. C. (2009). Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stochastic Models 25, 7689.10.1080/15326340802641006CrossRefGoogle Scholar
Chen, Y., Yuen, K. C. and Ng, K. W. (2011). Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims. Appl. Stoch. Models Bus. Ind. 27, 290300.CrossRefGoogle Scholar
Cheng, M., Konstantinides, D. G. and Wang, D. (2024). Multivariate regularly varying insurance and financial risks in multidimensional risk models. J. Appl. Probab. 61(4), 13191342.CrossRefGoogle Scholar
Cline, D. B. and Resnick, S. I. (1992). Multivariate subexponential distributions. Stochastic Process. Appl. 42, 4972.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Applications of Mathematics (New York), Vol. 33. Springer-Verlag, Berlin.Google Scholar
Fougeres, A.-L. and Mercadier, C. (2012). Risk measures and multivariate extensions of Breiman’s theorem. J. Appl. Probab. 49, 364384.10.1239/jap/1339878792CrossRefGoogle Scholar
Fu, K.-A. and Li, H. (2016). Asymptotic ruin probability of a renewal risk model with dependent by-claims and stochastic returns. J. Comput. Appl. Math. 306, 154165.CrossRefGoogle Scholar
Gao, Q., Zhuang, J. and Huang, Z. (2019). Asymptotics for a delay-claim risk model with diffusion, dependence structures and constant force of interest. J. Comput. Appl. Math. 353, 219231.CrossRefGoogle Scholar
Heyde, C. C. and Wang, D. (2009). Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims. Adv. Appl. Probab. 41, 206224.10.1239/aap/1240319582CrossRefGoogle Scholar
Hu, Z. and Jiang, B. (2013). On joint ruin probabilities of a two-dimensional risk model with constant interest rate. J. Appl. Probab. 50, 309322.10.1239/jap/1371648943CrossRefGoogle Scholar
Jessen, A. H. and Mikosch, T. (2006). Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 80(94), 171192.10.2298/PIM0694171JCrossRefGoogle Scholar
Konstantinides, D. G. and Li, J. (2016). Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims. Insurance Math. Econom. 69, 3844.CrossRefGoogle Scholar
Li, J. (2016). Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return. Insurance Math. Econom. 71, 195204.10.1016/j.insmatheco.2016.09.003CrossRefGoogle Scholar
Li, J. (2023). Asymptotic ruin probabilities for a renewal risk model with a random number of delayed claims. J. Ind. Manag. Optim. 19, 38403853.10.3934/jimo.2022112CrossRefGoogle Scholar
Li, J., Liu, Z. and Tang, Q. (2007). On the ruin probabilities of a bidimensional perturbed risk model. Insurance Math. Econom. 41, 185195.CrossRefGoogle Scholar
Li, J.-z. and Wu, R. (2015). The Gerber-Shiu discounted penalty function for a compound binomial risk model with by-claims. Acta Math. Appl. Sin. Engl. Ser. 31, 181190.10.1007/s10255-015-0459-3CrossRefGoogle Scholar
Lindskog, C. F. (2004). Multivariate extremes and regular variation for stochastic processes. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Eidgenoessische Technische Hochschule Zuerich (Switzerland).Google Scholar
Liu, X., Gao, Q. and Dong, Z. (2024). Asymptotics for a diffusion-perturbed risk model with dependence structures, constant interest force, and a random number of delayed claims. Stochastic Models 40, 97122.10.1080/15326349.2023.2209146CrossRefGoogle Scholar
Liu, Y., Chen, Z. and Fu, K.-A. (2021). Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims. Stat. Probab. Lett. 177, Paper No. 109174, 11.CrossRefGoogle Scholar
McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management, revised ed. Princeton Series in Finance. Princeton University Press, Princeton, NJ.Google Scholar
Meng, H. and Wang, G.-J. (2012). On the expected discounted penalty function in a delayed-claims risk model. Acta Math. Appl. Sin. Engl. Ser. 28, 215224.10.1007/s10255-012-0141-yCrossRefGoogle Scholar
Nelsen, R. B. (2006). An Introduction to Copulas, 2nd ed. Springer Series in Statistics. Springer, New York.Google Scholar
Omey, E. A. M. (2006). Subexponential distribution functions in Rd . J. Math. Sci. 138, 54345449.CrossRefGoogle Scholar
Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust, Vol. 4. Springer-Verlag, New York.Google Scholar
Resnick, S. I. (2007). Heavy-tail Phenomena. Springer Series in Operations Research and Financial Engineering. Springer, New York. Probabilistic and statistical modeling.Google Scholar
Samorodnitsky, G. and Sun, J. (2016). Multivariate subexponential distributions and their applications. Extremes 19, 171196.10.1007/s10687-016-0242-8CrossRefGoogle Scholar
Stein, C. (1946). A note on cumulative sums. Ann. Math. Stat. 17, 498499.10.1214/aoms/1177730890CrossRefGoogle Scholar
Tang, Q., Wang, G. and Yuen, K. C. (2010). Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model. Insurance: Math. Econ. 46, 362370.Google Scholar
Tang, Q. and Yuan, Z. (2013). Asymptotic analysis of the loss given default in the presence of multivariate regular variation. N. Am. Actuar. J. 17, 253271.CrossRefGoogle Scholar
Wang, G. and Wu, R. (2001). Distributions for the risk process with a stochastic return on investments. Stochastic Process. Appl. 95, 329341.10.1016/S0304-4149(01)00102-8CrossRefGoogle Scholar
Waters, H. R. and Papatriandafylou, A. (1985). Ruin probabilities allowing for delay in claims settlement. Insurance Math. Econom. 4, 113122.10.1016/0167-6687(85)90005-8CrossRefGoogle Scholar
Xiao, Y. and Guo, J. (2007). The compound binomial risk model with time-correlated claims. Insurance Math. Econom. 41, 124133.10.1016/j.insmatheco.2006.10.009CrossRefGoogle Scholar
Xie, J.-H. and Zou, W. (2010). Expected present value of total dividends in a delayed claims risk model under stochastic interest rates. Insurance Math. Econom. 46, 415422.10.1016/j.insmatheco.2009.12.007CrossRefGoogle Scholar
Xie, J.-H. and Zou, W. (2011). On the expected discounted penalty function for the compound Poisson risk model with delayed claims. J. Comput. Appl. Math. 235, 23922404.Google Scholar
Yang, H. and Li, J. (2019). On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims. Statist. Probab. Lett. 149, 153159.10.1016/j.spl.2019.01.037CrossRefGoogle Scholar
Yang, Y. and Su, Q. (2023). Asymptotic behavior of ruin probabilities in a multidimensional risk model with investment and multivariate regularly varying claims. J. Math. Anal. Appl. 525, Paper No. 127319, 15.10.1016/j.jmaa.2023.127319CrossRefGoogle Scholar
Yuen, K. C., Guo, J. and Ng, K. W. (2005). On ultimate ruin in a delayed-claims risk model. J. Appl. Probab. 42, 163174.CrossRefGoogle Scholar
Yuen, K. C. and Guo, J. Y. (2001). Ruin probabilities for time-correlated claims in the compound binomial model. Insurance Math. Econom. 29, 4757.10.1016/S0167-6687(01)00071-3CrossRefGoogle Scholar
Yuen, K. C., Wang, G. and Wu, R. (2006). On the renewal risk process with stochastic interest. Stochastic Process. Appl. 116, 14961510.10.1016/j.spa.2006.04.012CrossRefGoogle Scholar
Zhang, A., Liu, S. and Yang, Y. (2021). Asymptotics for ultimate ruin probability in a by-claim risk model. Nonlinear Anal. Model. Control 26, 259270.10.15388/namc.2021.26.20948CrossRefGoogle Scholar
Zou, W. and Xie, J.-H. (2013). On the probability of ruin in a continuous risk model with delayed claims. J. Korean Math. Soc. 50, 111125.10.4134/JKMS.2013.50.1.111CrossRefGoogle Scholar