Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-11T16:38:12.188Z Has data issue: false hasContentIssue false

Modelling Evolution

Published online by Cambridge University Press:  22 September 2025

Walter Veit
Affiliation:
University of Reading and Ludwig-Maximilians-Universität München

Summary

This Element discusses the central role of models within evolutionary biology, offering an accessible introduction and synthesis of literature in both evolutionary biology and the philosophy of models. We will examine three questions: first, what does it mean to be a 'model' and to engage in 'modelling'? Second, what types of models are employed within evolutionary biology? Third, how can models of evolution be tested? In exploring the answers to these questions, this Element hopes to highlight how evolutionary biology and philosophy of biology can usefully interact to understand conceptual and methodological problems arising from modelling evolution.
Get access

Information

Type
Element
Information
Online ISBN: 9781009459983
Publisher: Cambridge University Press
Print publication: 16 October 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Abdelhady, A. A., Seuss, B., Jain, S., Fathy, D., Sami, M., Ali, A., Elsheikh, A., Ahmed, M. S., Elewa, A. M., & Hussain, A. M. (2024). Molecular technology in paleontology and paleobiology: Applications and limitations. Quaternary International, 685, 24–38.CrossRefGoogle Scholar
Abenes, F. M. D., & Caballes, D. G. (2020). Misconceptions of science teachers in evolution. Biometrics and Bioinformatics, 12(2), 31–38.Google Scholar
Aguirre-Liguori, J. A., Ramírez-Barahona, S., & Gaut, B. S. (2021). The evolutionary genomics of species’ responses to climate change. Nature Ecology & Evolution, 5(10), 1350–1360.10.1038/s41559-021-01526-9CrossRefGoogle ScholarPubMed
Ankeny, R., & Leonelli, S. (2020). Model Organisms (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108593014CrossRefGoogle Scholar
Barklow, W. (1995). Hippo talk. Natural History, 104(5), 54Google Scholar
Bergstrom, C. T., & Dugatkin, L. A. (2012). Evolution (1st ed.). Norton.Google Scholar
Black, A. J., Bourrat, P., & Rainey, P. B. (2020). Ecological scaffolding and the evolution of individuality. Nature Ecology & Evolution, 4(3), 426–436. https://doi.org/10.1038/s41559-019-1086-9CrossRefGoogle ScholarPubMed
Bokulich, A. (2014). How the tiger bush got its stripes: ‘how possibly’ vs. ‘how actually’ model explanations. The Monist, 97(3), 321–338.10.5840/monist201497321CrossRefGoogle Scholar
Bolker, J. A. (2009). Exemplary and surrogate models: Two modes of representation in biology. Perspectives in Biology and Medicine, 52(4), 485–499.10.1353/pbm.0.0125CrossRefGoogle ScholarPubMed
Bourrat, P. (2021). Facts, Conventions, and the Levels of Selection. Cambridge University Press. www.cambridge.org/core/elements/facts-conventions-and-the-levels-of-selection/8EAF88974A3BE92761217A2EC6AB4634CrossRefGoogle Scholar
Bourrat, P., Takacs, P., Doulcier, G., Nitschke, M. C., Black, A. J., Hammerschmidt, K., & Rainey, P. B. (2024). Individuality through ecology: Rethinking the evolution of complex life from an externalist perspective. Ecology and Evolution, 14(12), e70661. https://doi.org/10.1002/ece3.70661CrossRefGoogle ScholarPubMed
Briggs, D. E., Evershed, R. P., & Lockheart, M. J. (2000). The biomolecular paleontology of continental fossils. Paleobiology, 26(S4), 169–193.10.1017/S0094837300026920CrossRefGoogle Scholar
Brown, J. M., & Thomson, R. C. (2018). Evaluating model performance in evolutionary biology. Annual Review of Ecology, Evolution, and Systematics, 49(1), 95–114. https://doi.org/10.1146/annurev-ecolsys-110617-062249CrossRefGoogle Scholar
Callender, C., & Cohen, J. (2006). There is no special problem about scientific representation. THEORIA, 21(1), 67–85. https://doi.org/10.1387/theoria.554Google Scholar
Callier, V. (2022). Machine learning in evolutionary studies comes of age. Proceedings of the National Academy of Sciences, 119(17), e2205058119. https://doi.org/10.1073/pnas.2205058119CrossRefGoogle ScholarPubMed
Chiappe, L. M. (2009). Downsized Dinosaurs: The evolutionary transition to modern birds. Evolution: Education and Outreach, 2(2), 248–256. https://doi.org/10.1007/s12052-009-0133-4Google Scholar
Chown, S. L., Hoffmann, A. A., Kristensen, T. N., AngillettaJr, M. J., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to climate change: A perspective from evolutionary physiology. Climate Research, 43(1–2), 3–15.10.3354/cr00879CrossRefGoogle Scholar
Cotner, S., & Wassenberg, D. (2020). The evolution and biology of sex. Available through the University of Minnesota Affordable Content Partnership. https://open.lib.umn.edu/evolutionbiology/Google Scholar
d’Apollonia, S. T., Charles, Elizabeth S., & Boyd, G. M. (2004). Acquisition of complex systemic thinking: Mental models of evolution. Educational Research and Evaluation, 10(4–6), 499–521. https://doi.org/10.1080/13803610512331383539Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray.10.5962/bhl.title.82303CrossRefGoogle Scholar
de Oliveira, G. S. (2021). Representationalism is a dead end. Synthese, 198(1), 209–235. https://doi.org/10.1007/s11229-018-01995-9CrossRefGoogle Scholar
De Santis, M. D. (2021). Misconceptions about historical sciences in evolutionary biology. Evolutionary Biology, 48(1), 94–99. https://doi.org/10.1007/s11692-020-09526-6CrossRefGoogle Scholar
Dimech, D. K. (2017). Modelling with words: Narrative and natural selection. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 62, 20–24. https://doi.org/10.1016/j.shpsc.2017.02.003CrossRefGoogle ScholarPubMed
Dobson, E. (2012). Search for Ancient DNA, the Meaning of Fossils, and Paleontology in the Modern Evolutionary Synthesis. https://repository.lib.fsu.edu/islandora/object/fsu:182834Google Scholar
Downes, S. M. (2011). Scientific models. Philosophy Compass, 6(11), 757–764. https://doi.org/10.1111/j.1747-9991.2011.00441.xCrossRefGoogle Scholar
Downes, S. M. (2020). Models and Modeling in the Sciences: A Philosophical Introduction (1st ed.). Routledge. https://doi.org/10.4324/9781315647456CrossRefGoogle Scholar
Elgin, M., & Sober, E. (2017). Popper’s shifting appraisal of evolutionary theory. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 7(1), 31–55. https://doi.org/10.1086/691119Google Scholar
Feltes, B. C., Grisci, B. I., de Faria Poloni, J., & Dorn, M. (2018). Perspectives and applications of machine learning for evolutionary developmental biology. Molecular Omics, 14(5), 289–306.10.1039/C8MO00111ACrossRefGoogle Scholar
Friedman, M. (1953). The methodology of positive economics. In Friedman, M. (ed.), Essays in Positive Economics (pp. 3–43). University of Chicago Press.Google Scholar
Frigg, R. (2022). Models and Theories: A Philosophical Inquiry (1st ed.). Routledge. https://doi.org/10.4324/9781003285106Google Scholar
Frigg, R., & Nguyen, J. (2016). The fiction view of models reloaded. The Monist, 99(3), 225–242. https://doi.org/10.1093/monist/onw002CrossRefGoogle Scholar
Frigg, R., & Nguyen, J. (2017). Models and representation. In Magnani, L., & Bertolotti, T. (eds.), Springer Handbook of Model-Based Science (pp. 49–102). Springer International Publishing. https://doi.org/10.1007/978-3-319-30526-4_3Google Scholar
Frigg, R., & Nguyen, J. (2021). Scientific representation. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Winter 2021). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2021/entries/scientific-representation/Google Scholar
Futuyma, D. J. (2006). Evolutionary Biology. W.H. Freeman.Google Scholar
Gatesy, J., Hayashi, C., Cronin, M. A., & Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Molecular Biology and Evolution, 13(7), 954–963. https://doi.org/10.1093/oxfordjournals.molbev.a025663CrossRefGoogle ScholarPubMed
Gelfert, A. (2019). Probing possibilities: Toy models, minimal models, and exploratory models. In Nepomuceno-Fernández, Á., Magnani, L., Salguero-Lamillar, F. J., Barés-Gómez, C., & Fontaine, M. (eds.), Model-Based Reasoning in Science and Technology (Vol. 49, pp. 3–19). Springer International Publishing. https://doi.org/10.1007/978-3-030-32722-4_1CrossRefGoogle Scholar
Gibbons, A. (2012). Bonobos join chimps as closest human relatives. Science, 13. https://doi.org/10.1126/article.25670Google Scholar
Giere, R. N. (1988). Explaining Science: A Cognitive Approach. University of Chicago Press.10.7208/chicago/9780226292038.001.0001CrossRefGoogle Scholar
Giere, R. N. (2001). The nature and function of models. Behavioral and Brain Sciences, 24(6), 1060–1060.10.1017/S0140525X01320125CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (2007). The strategy of model-based science. Biology & Philosophy, 21(5), 725–740. https://doi.org/10.1007/s10539-006-9054-6CrossRefGoogle Scholar
Goodman, N. (1976). Languages of Art: An Approach to a Theory of Symbols (2nd ed., [Nachdr.]). Hackett.10.5040/9781350928541CrossRefGoogle Scholar
Gould, S. J. (1990). Wonderful Life: The Burgess Shale and the Nature of History (1st ed.). W. W. Norton & Company, Incorporated.Google Scholar
Greener, J. G., Kandathil, S. M., Moffat, L., & Jones, D. T. (2022). A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology, 23(1), 40–55. https://doi.org/10.1038/s41580-021-00407-0CrossRefGoogle ScholarPubMed
Gregory, T. R. (2008). Understanding evolutionary trees. Evolution: Education and Outreach, 1(2), 121–137. https://doi.org/10.1007/s12052-008-0035-xGoogle Scholar
Gregory, T. R. (2009). Understanding natural selection: Essential concepts and common misconceptions. Evolution: Education and Outreach, 2(2), 156–175. https://doi.org/10.1007/s12052-009-0128-1Google Scholar
Griesemer, J. R. (1990). Material models in biology. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1990(2), 79–93. https://doi.org/10.1086/psaprocbienmeetp.1990.2.193060Google Scholar
Gunawardena, J. (2014). Beware the tail that wags the dog: Informal and formal models in biology. Molecular Biology of the Cell, 25(22), 3441–3444. https://doi.org/10.1091/mbc.e14-02-0717CrossRefGoogle ScholarPubMed
Hammerschmidt, K., Rose, C. J., Kerr, B., & Rainey, P. B. (2014). Life cycles, fitness decoupling and the evolution of multicellularity. Nature, 515(7525), 75.10.1038/nature13884CrossRefGoogle ScholarPubMed
Hinchliff, C. E., Smith, S. A., Allman, J. F., Burleigh, J. G., Chaudhary, R., Coghill, L. M., Crandall, K. A., Deng, J., Drew, B. T., Gazis, R., Gude, K., Hibbett, D. S., Katz, L. A., Laughinghouse, H. D., McTavish, E. J., Midford, P. E., Owen, C. L., Ree, R. H., Rees, J. A., … Cranston, K. A. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences, 112(41), 12764–12769. https://doi.org/10.1073/pnas.1423041112CrossRefGoogle ScholarPubMed
Hughes, R. I. G. (1997). Models and representation. Philosophy of Science, 64(S4), S325–S336. https://doi.org/10.1086/392611CrossRefGoogle Scholar
Kaplan, M. (2012). DNA has a 521-year half-life. Nature. https://doi.org/10.1038/nature.2012.11555CrossRefGoogle Scholar
Keller, E. F. (2000). Models of and models for: Theory and practice in contemporary biology. Philosophy of Science, 67, S72–S86.10.1086/392810CrossRefGoogle Scholar
Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. (2002). Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418(6894), 171.10.1038/nature00823CrossRefGoogle Scholar
Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196–217. https://doi.org/10.1207/s15327957pspr0203_4CrossRefGoogle ScholarPubMed
Kuzenkov, O., Morozov, A., & Kuzenkova, G. (2020). Exploring evolutionary fitness in biological systems using machine learning methods. Entropy, 23(1), 35.10.3390/e23010035CrossRefGoogle ScholarPubMed
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421–431.Google Scholar
Lewens, T. (2024). Cultural Selection. Cambridge University Press.10.1017/9781009539043CrossRefGoogle Scholar
Lloyd, E. A. (1994). The Structure and Confirmation of Evolutionary Theory (1. Princeton paperback print). Princeton University Press.10.1515/9780691223834CrossRefGoogle Scholar
Loughney, K. M., Badgley, C., Bahadori, A., Holt, W. E., & Rasbury, E. T. (2021). Tectonic influence on Cenozoic mammal richness and sedimentation history of the Basin and Range, western North America. Science Advances, 7(45), eabh4470. https://doi.org/10.1126/sciadv.abh4470CrossRefGoogle ScholarPubMed
Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A., & Tsuboi, M. (2021). Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Frontiers in Ecology and Evolution, 9, 642774.10.3389/fevo.2021.642774CrossRefGoogle Scholar
Mäki, U. (2009). MISSing the world. Models as isolations and credible surrogate systems. Erkenntnis, 70(1), 29–43.10.1007/s10670-008-9135-9CrossRefGoogle Scholar
Massimi, M. (2019). Two kinds of exploratory models. Philosophy of Science, 86(5), 869–881.CrossRefGoogle Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press.10.1017/CBO9780511806292CrossRefGoogle Scholar
Maynard Smith, J. (1983). Models of evolution. Proceedings of the Royal Society of London. Series B. Biological Sciences, 219(1216), 315–325. https://doi.org/10.1098/rspb.1983.0076Google Scholar
Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427), 15–18. https://doi.org/10.1038/246015a0Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Harvard University Press.Google Scholar
Mayr, E. (1983). How to carry out the adaptationist program? The American Naturalist, 121(3), 324–334. https://doi.org/10.1086/284064CrossRefGoogle Scholar
Mayr, G. (2016). Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance. John Wiley & Sons. https://books.google.com/books?hl=en&lr=&id=UNqTDgAAQBAJ&oi=fnd&pg=PP13&dq=dinosaur+bird+evolution+fossil&ots=q_ssRP0Hez&sig=Q-TrLGjqYJ1qsvQcDnFGrJj9CFU10.1002/9781119020677CrossRefGoogle Scholar
McGlothlin, J. W., Akçay, E., Brodie, E. D., III, Moore, A. J., & Van Cleve, J. (2022). A Synthesis of game theory and quantitative genetic models of social evolution. Journal of Heredity, 113(1), 109–119. https://doi.org/10.1093/jhered/esab064CrossRefGoogle ScholarPubMed
Meir, E., Perry, J., Herron, J. C., & Kingsolver, J. (2007). College students’ misconceptions about evolutionary trees. The American Biology Teacher, 69(7). https://bioone.org/journals/the-american-biology-teacher/volume-69/issue-7/0002-7685(2007)69[71:CSMAET]2.0.CO;2/College-Students-Misconceptions-About-Evolutionary-Trees/10.1662/0002-7685(2007)69[71:CSMAET]2.0.CO;2.full10.1662/0002-7685(2007)69[71:CSMAET]2.0.CO;2CrossRefGoogle Scholar
Mitchell, M. W., & Gonder, M. K. (2013). Primate speciation: A case study of African apes. Nature Education Knowledge, 4(2), 1.Google Scholar
Moody, E. R. R., Álvarez-Carretero, S., Mahendrarajah, T. A., Clark, J. W., Betts, H. C., Dombrowski, N., Szánthó, L. L., Boyle, R. A., Daines, S., Chen, X., Lane, N., Yang, Z., Shields, G. A., Szöllo˝si, G. J., Spang, A., Pisani, D., Williams, T. A., Lenton, T. M., & Donoghue, P. C. J. (2024). The nature of the last universal common ancestor and its impact on the early Earth system. Nature Ecology & Evolution, 8(9), 1654–1666. https://doi.org/10.1038/s41559-024-02461-1CrossRefGoogle ScholarPubMed
Mueller, L. D., & Joshi, A. (2000). Stability in Model Populations. Princeton University Press.Google Scholar
Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M., & Marshall, D. J. (2013). Predicting evolutionary responses to climate change in the sea. Ecology Letters, 16(12), 1488–1500. https://doi.org/10.1111/ele.12185CrossRefGoogle ScholarPubMed
Myin, E., & Hutto, D. D. (2015). REC: Just radical enough. Studies in Logic, Grammar and Rhetoric, 41(1), 61–71.10.1515/slgr-2015-0020CrossRefGoogle Scholar
Nehm, R. H., & Reilly, L. (2007). Biology majors’ knowledge and misconceptions of natural selection. BioScience, 57(3), 263–272.10.1641/B570311CrossRefGoogle Scholar
Nehm, R. H., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. S. (2009). Does the segregation of evolution in biology textbooks and introductory courses reinforce students’ faulty mental models of biology and evolution? Evolution: Education and Outreach, 2(3), 527–532. https://doi.org/10.1007/s12052-008-0100-5Google Scholar
Nelson, C. E. (2008). Teaching evolution (and all of biology) more effectively: Strategies for engagement, critical reasoning, and confronting misconceptions. American Zoologist, 48(2), 213–225.Google ScholarPubMed
Neto, C., Meynell, L., & Jones, C. T. (2023). Scaffolds and scaffolding: An explanatory strategy in evolutionary biology. Biology & Philosophy, 38(2), 8. https://doi.org/10.1007/s10539-023-09897-yCrossRefGoogle Scholar
Nguyen, J., & Frigg, R. (2022). Maps, models, and representation. In Lawler, I., Khalifa, K., & Shech, E. (eds.), Scientific Understanding and Representation (pp. 261–279). Routledge.10.1017/9781009003575CrossRefGoogle Scholar
Nikaido, M., Rooney, A. P., & Okada, N. (1999). Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 10261. https://doi.org/10.1073/pnas.96.18.10261Google Scholar
O’Connor, C., & Weatherall, J. O. (2016). Black Holes, Black-Scholes, and Prairie Voles: An essay review of simulation and similarity, by Michael Weisberg. Philosophy of Science, 83(4), 613–626.10.1086/687265CrossRefGoogle Scholar
Odenbaugh, J. (2018). Models, models, models: A deflationary view. Synthese. https://doi.org/10.1007/s11229-017-1665-8Google Scholar
Odenbaugh, J. (2019). Ecological Models (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108685283CrossRefGoogle Scholar
O’Malley, M. A., & Koonin, E. V. (2011). How stands the Tree of Life a century and a half after The Origin? Biology Direct, 6(1), 32. https://doi.org/10.1186/1745-6150-6-32Google Scholar
O’Malley, M. A., Travisano, M., Velicer, G. J., & Bolker, J. A. (2015). How do microbial populations and communities function as model systems? The Quarterly Review of Biology, 90(3), 269–293. https://doi.org/10.1086/682588Google ScholarPubMed
Oskam, C. L., Haile, J., McLay, E., Rigby, P., Allentoft, M. E., Olsen, M. E., Bengtsson, C., Miller, G. H., Schwenninger, J.-L., Jacomb, C., Walter, R., Baynes, A., Dortch, J., Parker-Pearson, M., Gilbert, M. T. P., Holdaway, R. N., Willerslev, E., & Bunce, M. (2010). Fossil avian eggshell preserves ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 277(1690), 1991–2000. https://doi.org/10.1098/rspb.2009.2019Google ScholarPubMed
Otsuka, J. (2019). The Role of Mathematics in Evolutionary Theory (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108672115CrossRefGoogle Scholar
Oxford English Dictionary. (2024). model, n. & adj. Oxford University Press; Oxford English Dictionary. https://doi.org/10.1093/OED/3984201854Google Scholar
Parker, W. S. (2020). Model evaluation: An adequacy-for-purpose view. Philosophy of Science, 87(3), 457–477.10.1086/708691CrossRefGoogle Scholar
Pau, S., Wolkovich, E. M., Cook, B. I., Davies, T. J., Kraft, N. J. B., Bolmgren, K., Betancourt, J. L., & Cleland, E. E. (2011). Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 17(12), 3633–3643. https://doi.org/10.1111/j.1365-2486.2011.02515.xCrossRefGoogle Scholar
Plutynski, A. (2001). Modeling evolution in theory and practice. Philosophy of Science, 68(S3), S225–S236. https://doi.org/10.1086/392911CrossRefGoogle Scholar
Popper, K. (1957). The Poverty of Historicism. Routledge & Kegan Paul. www.taylorfrancis.com/books/mono/10.4324/9780203538012/poverty-historicism-karl-popperGoogle Scholar
Popper, K. (1978). Natural selection and the emergence of mind. Dialectica, 32(3–4), 339–355. https://doi.org/10.1111/j.1746-8361.1978.tb01321.xCrossRefGoogle Scholar
Potochnik, A. (2017). Idealization and the Aims of Science. University of Chicago Press.10.7208/chicago/9780226507194.001.0001CrossRefGoogle Scholar
Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J. R., Walenz, B., Koren, S., Sutton, G., Kodira, C., Winer, R., Knight, J. R., Mullikin, J. C., Meader, S. J., Ponting, C. P., Lunter, G., Higashino, S., Hobolth, A., Dutheil, J., Karakoç, E., … Pääbo, S. (2012). The bonobo genome compared with the chimpanzee and human genomes. Nature, 486(7404), 527–531. https://doi.org/10.1038/nature11128CrossRefGoogle ScholarPubMed
Quine, W. V. O. (1951). Two Dogmas of empiricism. PR, 60, 20–43.Google Scholar
Rashid, D. J., Chapman, S. C., Larsson, H. C., Organ, C. L., Bebin, A.-G., Merzdorf, C. S., Bradley, R., & Horner, J. R. (2014). From dinosaurs to birds: A tail of evolution. EvoDevo, 5(1), 25. https://doi.org/10.1186/2041-9139-5-25CrossRefGoogle ScholarPubMed
Ratti, E. (2020). ‘Models of’ and ‘Models for’: On the relation between mechanistic models and experimental strategies in molecular biology. The British Journal for the Philosophy of Science, 71(2), 773–797.10.1093/bjps/axy018CrossRefGoogle Scholar
Resnik, D. B. (1991). How-possibly explanations in biology. Acta Biotheoretica, 39(2), 141–149. https://doi.org/10.1007/BF00046596CrossRefGoogle Scholar
Rogers, K. (2023). Scientific modeling. In Encyclopædia Britannica. www.britannica.com/science/scientific-modelingGoogle Scholar
Rohland, N., Glocke, I., Aximu-Petri, A., & Meyer, M. (2018). Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature Protocols, 13(11), 2447–2461. https://doi.org/10.1038/s41596-018-0050-5CrossRefGoogle ScholarPubMed
Romeijn, J.-W. (2022). Philosophy of statistics. In Zalta, E. N., & Nodelman, U. (eds.), The Stanford Encyclopedia of Philosophy (Fall 2022). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2022/entries/statistics/Google Scholar
Rose, C. J., Hammerschmidt, K., Pichugin, Y., & Rainey, P. B. (2020). Meta-population structure and the evolutionary transition to multicellularity. Ecology Letters, 23(9), 1380–1390.10.1111/ele.13570CrossRefGoogle ScholarPubMed
Rosenberg, A. (2009). If economics is a science, what kind of a science is it? In Ross, D., & Kincaid, H. (eds.), The Oxford Handbook of Philosophy of Economics (pp. 55–67). Oxford University Press.Google Scholar
Rosindell, J., & Harmon, L. J. (2012). OneZoom: A fractal explorer for the tree of life. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001406Google ScholarPubMed
Sack, J. D. (2018). OneZoom Tree of Life Explorer. University of California Press USA. https://online.ucpress.edu/abt/article-abstract/80/3/248/19086Google Scholar
Servedio, M. R., Brandvain, Y., Dhole, S., Fitzpatrick, C. L., Goldberg, E. E., Stern, C. A., Van Cleve, J., & Yeh, D. J. (2014). Not just a theory – The utility of mathematical models in evolutionary biology. PLoS Biology, 12(12), e1002017. https://doi.org/10.1371/journal.pbio.1002017CrossRefGoogle ScholarPubMed
Sober, E. (2008). Evidence and Evolution: The Logic Behind the Science. Cambridge University Press.10.1017/CBO9780511806285CrossRefGoogle Scholar
Sonleitner, F. J. (1986). What did Karl Popper really say about Evolution? Creation/Evolution, 18, 9–14.Google Scholar
Stamos, D. N. (1996). Popper, falsifiability, and evolutionary biology. Biology & Philosophy, 11(2), 161–191. https://doi.org/10.1007/BF00128918CrossRefGoogle Scholar
Tarca, A. L., Carey, V. J., Chen, X., Romero, R., & Drӑghici, S. (2007). Machine learning and its applications to biology. PLoS Computational Biology, 3(6), e116.10.1371/journal.pcbi.0030116CrossRefGoogle ScholarPubMed
Teller, P. (2001). Twilight of the perfect model model. Erkenntnis (1975-), 55(3), 393–415.Google Scholar
The Economist. (2006). A heavyweight champ, at five foot two. The Economist. www.economist.com/special-report/2006/11/23/a-heavyweight-champ-at-five-foot-twoGoogle Scholar
Thomson, K. (2017, February 6). Darwin’s Literary Models. American Scientist. https://www.americanscientist.org/article/darwins-literary-modelsGoogle Scholar
Veit, W. (2019a). Modeling morality. In Fontaine, M., Barés-Gómez, C., Salguero-Lamillar, F., Magnani, L., & Nepomuceno-Fernández, Á. (eds.), Model-Based Reasoning in Science and Technology: Inferential Models for Logic, Language, Cognition and Computation (pp. 83–102). Springer Verlag.Google Scholar
Veit, W. (2019b). Evolution of multicellularity: Cheating done right. Biology & Philosophy, 34(3), 34. https://doi.org/10.1007/s10539-019-9688-9CrossRefGoogle Scholar
Veit, W. (2020). Model pluralism. Philosophy of the Social Sciences, 50(2), 91–114. https://doi.org/10.1177/0048393119894897CrossRefGoogle Scholar
Veit, W. (2022). Scaffolding natural selection. Biological Theory, 17(2), 163–180.10.1007/s13752-021-00387-6CrossRefGoogle Scholar
Veit, W. (2023). Model anarchism. Theoria: Revista de Teoría, Historia y Fundamentos de La Ciencia, 38(2), 225–245.Google Scholar
Veit, W., & Milan, N. (2021). Metaphors in arts and science. European Journal for Philosophy of Science, 11(2), 1–24.10.1007/s13194-021-00351-yCrossRefGoogle Scholar
Waldvogel, A.-M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., & Bataillon, T. (2020). Evolutionary genomics can improve prediction of species’ responses to climate change. Evolution Letters, 4(1), 4–18.10.1002/evl3.154CrossRefGoogle ScholarPubMed
Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press.Google Scholar
Weisberg, M. (2013). Simulation and Similarity: Using Models to Understand the World. Oxford University Press.10.1093/acprof:oso/9780199933662.001.0001CrossRefGoogle Scholar
Wilensky, U. (2002). NetLogo Models Library: Prisoner’s Dilemma Basic Evolutionary. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. https://ccl.northwestern.edu/netlogo/models/Prisoner'sDilemmaBasicEvolutionaryGoogle Scholar
Wong, Y., & Rosindell, J. (2022). Dynamic visualisation of million‐tip trees: The OneZoom project. Methods in Ecology and Evolution, 13(2), 303–313. https://doi.org/10.1111/2041-210X.13766CrossRefGoogle Scholar
Wortel, M. T., Agashe, D., Bailey, S. F., Bank, C., Bisschop, K., Blankers, T., Cairns, J., Colizzi, E. S., Cusseddu, D., Desai, M. M., Van Dijk, B., Egas, M., Ellers, J., Groot, A. T., Heckel, D. G., Johnson, M. L., Kraaijeveld, K., Krug, J., Laan, L., … Pennings, P. S. (2023). Towards evolutionary predictions: Current promises and challenges. Evolutionary Applications, 16(1), 3–21. https://doi.org/10.1111/eva.13513CrossRefGoogle Scholar
Yagan, O., Sridhar, A., Eletreby, R., Levin, S., Plotkin, J. B., & Poor, H. V. (2021). Modeling and analysis of the spread of COVID-19 under a multiple-strain model with mutations. Harvard Data Science Review, 4. https://assets.pubpub.org/r380a9bz/a11bf693-b0b1-43f7-bc28-77b9ee948797.pdfGoogle Scholar
Zhou, Z. (2004). The origin and early evolution of birds: Discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften, 91(10), 455–471. https://doi.org/10.1007/s00114-004-0570-4CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this Element conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modelling Evolution
  • Walter Veit, University of Reading and Ludwig-Maximilians-Universität München
  • Online ISBN: 9781009459983
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Modelling Evolution
  • Walter Veit, University of Reading and Ludwig-Maximilians-Universität München
  • Online ISBN: 9781009459983
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Modelling Evolution
  • Walter Veit, University of Reading and Ludwig-Maximilians-Universität München
  • Online ISBN: 9781009459983
Available formats
×