Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-11T10:33:52.064Z Has data issue: false hasContentIssue false

Ceramic Analysis

Laboratory Methods

Published online by Cambridge University Press:  10 September 2025

Irmgard Hein
Affiliation:
University of Vienna
Mustafa Kibaroğlu
Affiliation:
University of Tübingen
Michaela Schauer
Affiliation:
University of Vienna
Anno Hein
Affiliation:
Institute of Nanoscience and Nanotechnology, NCSR 'Demokritos'
Georgios Polymeris
Affiliation:
Institute of Nanoscience and Nanotechnology, NCSR 'Demokritos'
Judit Molera
Affiliation:
University of Vic – Central University of Catalonia
Trinitat Pradell
Affiliation:
Polytechnic University of Catalonia

Summary

This Element, authored by a team of specialist researchers, provides an overview of the various analytical techniques employed in the laboratory for the examination of archaeological ceramic materials. Pottery represents one of the earliest technical materials used by humans and is arguably the most frequently encountered object in archaeological sites. The original plastic raw material, which is solidified by firing, exhibits a wide range of variations in terms of production methods, material, form, decoration and function. This frequently presents significant challenges for archaeologists. In modern laboratories, a variety of archaeometric measurement methods are available for addressing a wide range of archaeological questions. Examples of these include determining the composition of archaeological materials, elucidating the processes involved in manufacturing and decoration, estimating the age of archaeological material, and much more. The six sections present available methods for analysing pottery, along with an exploration of their potential application.
Get access

Information

Type
Element
Information
Online ISBN: 9781009530774
Publisher: Cambridge University Press
Print publication: 30 September 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Ahn, S. & Fessler, J. A. (2003). Standard errors of mean, variance and standard deviation estimators, Technical Report 413, Communications and Signal Processing Laboratory, University of Michigan.Google Scholar
Aidona, E., Polymeris, G., Camps, P. et al. (2018). Archaeomagnetic versus luminescence methods; the case of an early Byzantine ceramic workshop in Thessaloniki, Greece. Arch.Anthropol.Sci., 10, 725741. https://doi.org/10.1007/s12520-017-0494-5.CrossRefGoogle Scholar
Aidona, E., Spassov, S., Kondopoulou, D. et al. (2021). Archaeomagnetism and luminescence on medieval kilns in Thessaloniki and Chalkidiki (N. Greece): Implications for geomagnetic field variations during the last two millennia. Phys.Earth.Planet., 316, 106709. https://doi.org/10.1016/j.pepi.2021.106709.CrossRefGoogle Scholar
Aitken, M. J. (1985). Thermoluminescence Dating. London: Academic Press.Google Scholar
Aitken, M. J. (1990). Science-Based Dating in Archaeology. London: Longman Press House.Google Scholar
Allegretta, I., Eramo, G., Pinto, D. & Hein, A. (2014). The effect of temper on the thermal conductivity of traditional ceramics: Nature, percentage and granulometry. Thermochim.Acta, 581, 100109. https://doi.org/10.1016/j.tca.2014.02.024.CrossRefGoogle Scholar
Allegretta, I., Eramo, G., Pinto, D. & Kilikoglou, V. (2015). Strength of kaolinite-based ceramics: Comparison between limestone- and quartz-tempered bodies. Appl.ClaySci., 116 –117, 220230. https://doi.org/10.1016/j.clay.2015.03.018.CrossRefGoogle Scholar
Aloupi-Siotis, E. (2020). Ceramic technology: How to characterise black Fe-based glass-ceramic coatings. Archaeol.Anthropol.Sci., 12, 191. https://doi.org/10.1007/s12520-020-01134-x.CrossRefGoogle Scholar
Amadori, M. L., Matin, E., Poldi, G. et al. (2023). Archaeometric research on decorated bricks of Tol-e Ajori monumental gate (6th century BC), Fars, Iran: New insight into the glazes. J.Cult.Herit., 60, 6371. https://doi.org/10.1016/j.culher.2023.01.005.CrossRefGoogle Scholar
Amicone, S. R., Radivojevicć, M., Quinn, P. S., Berthold, C. & Rehren, T. (2020). Pyrotechnological connections: Pottery firing technology and the origins of metallurgy in the Vinca Culture, Serbia. JAS, 118, 105123.Google Scholar
Angourakis, A., Martínez Ferreras, V., Torrano, A. & Gurt Esparraguera, J. M. (2018). Presenting multivariate statistical protocols in reusing Roman wine amphorae productions in Catalonia, Spain. JAS, 93, 150165. https://doi.org/10.1016/j.jas.2018.03.007.Google Scholar
Aprile, A., Castellano, G. & Eramo, G. (2019). Classification of mineral inclusions in ancient ceramics: Comparing different modal analysis strategies. Archaeol.Anthropol.Scis, 11, 25572567. https://doi.org/10.1007/s12520-018-0690-y.CrossRefGoogle Scholar
Arnold, D. E. (1985). Ceramic Theory and Cultural Process. Cambridge: Cambridge University Press.Google Scholar
Artal-Isbrand, P. & Klausmeyer, P. (2013). Evaluation of the relief line and the contourline on Greek red-figure vases using reflectance transformation imaging and three-dimensional laser scanning confocal microscopy. Stud.Conserv., 58(4), 338359. https://doi.org/10.1179/2047058412Y.0000000077.CrossRefGoogle Scholar
Ashby, M. F. (2013). Materials and the Environment – Eco-informed Material Choice (2nd Ed.). Amsterdam: Butterworth-Heinemann.Google Scholar
Bailiff, I. K. (1994). The pre-dose technique. Radiat.Meas., 23, 471479. https://doi.org/10.1016/1350-4487(94)90081-7.CrossRefGoogle Scholar
Barnes, S. (1991). Electron microscopy and analysis at the Natural History Museum. Microsc.Anal., 25, 2937.Google Scholar
Barone, G., Di Bella, M., Mastelloni, M. A. et al. (2017). Pigments characterization of polychrome vases production at Lipára: New insights by noninvasive spectroscopic methods. X-RaySpectrom., 47(1), 4657. https://doi.org/10.1002/xrs.2810.Google Scholar
Baxter, M. J. (2001). Statistical modelling of artefact compositional data. Archaeometry, 43(1), 131147. https://doi.org/10.1111/1475-4754.00008.CrossRefGoogle Scholar
Baxter, M. J. (2015). Exploratory Multivariate Analysis in Archaeology, Foundations of Archaeology (2nd Ed.). Clinton Corners, NY: Eliot Werner.Google Scholar
Baxter, M. J., Beardah, C. C., Papageorgiou, I. et al. (2008). On statistical approaches to the study of ceramic artefacts using geochemical and petrographic data. Archaeometry, 50(1), 142157. https://doi.org/10.1111/j.1475-4754.2007.00359.x.CrossRefGoogle Scholar
Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R. & Wolff, H. (2006). Handbook of Practical X-Ray Fluorescence Analysis. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Beier, T. & Mommsen, H. (1994). Modified Mahalanobis filters for grouping pottery by chemical composition. Archaeometry, 36, 287306. https://doi.org/10.1111/j.1475-4754.1994.tb00971.x.CrossRefGoogle Scholar
Berg, I. (2008). Looking through pots: Recent advances in ceramics X-radiography. JAS, 35, 11771188. https://doi.org/10.1016/j.jas.2007.08.006.Google Scholar
Bergaya, F. & Lagaly, G. (2006). General introduction: Clays, clay minerals and clay science. In Bergaya, F., Theng, B. K. G. & Lagaly, G., eds., Handbook of Clay Science. Amsterdam: Elsevier, pp. 118.Google Scholar
Betina, L. (2019). Contemporary pottery-making in Rhodes: Approaching ancient through modern craft traditions. JASRep., 27,102003. https://doi.org/10.1016/j.jasrep.2019.102003.Google Scholar
Braekmans, D. & Degryse, P. (2017). Petrography: Optical microscopy. In Hunt, A., ed., The Oxford Handbook of Archaeological Ceramic Analysis. Oxford: Oxford University Press, pp. 233265.Google Scholar
Bronitsky, G. & Hamer, R. (1986). Experiments in ceramic technology: The effects of various tempering materials on impact and thermal-shock resistance. Am.Antiq., 51, 89101. https://doi.org/10.2307/280396.CrossRefGoogle Scholar
Bruni, S., Longoni, M., De Filippi, F., Calore, N. & Bagnasco Gianni, G. (2023). External reflection FTIR spectroscopy applied to archaeological pottery: A non-invasive investigation about provenance and firing temperature. Minerals, 13(9), 1211. https://doi.org/10.3390/min13091211.CrossRefGoogle Scholar
Budja, M. (2011). Ceramic trajectories: From figurines to vessels. In Jordan, P. & Zvelebil, M., eds., Ceramics before Farming: The Dispersal of Pottery among Prehistoric Eurasian Hunter-Gatherers. Walnut Creek: Left Coast Press, pp. 499525.Google Scholar
Burger, M., Glaus, R., Hubert, V. et al. (2017). Novel sampling techniques for trace element quantification in ancient copper artifacts using laser ablation inductively coupled plasma mass spectrometry. JAS, 82, 6271. https://doi.org/10.1016/j.jas.2017.04.009.Google Scholar
Burnstock, A. & Jones, C. (2000). Scanning electron microscopy techniques for imaging materials from paintings. In Creagh, D. C. & Bradley, D. A., eds., Radiation in Art and Archaeometry. Amsterdam: Elsevier, pp. 202231.10.1016/B978-044450487-6/50056-0CrossRefGoogle Scholar
Buxeda i Garrigos, J. (1999). Alteration and contamination of archaeological ceramics: The perturbation problem. JAS, 26, 295313. https://doi.org/10.1006/jasc.1998.0390.Google Scholar
Caiger-Smith, A. (1985). Lustre Pottery: Technique, Tradition and Innovation in Islam and the Western World. London: Faber and Faber.Google Scholar
Chaviara, A. & Aloupi-Siotis, E. (2016). The story of a soil that became a glaze: Chemical and microscopic fingerprints on the Attic vases. JASRep., 7, 510518. https://doi.org/10.1016/j.jasrep.2015.08.016.Google Scholar
Cau, M. A., Day, P. M., Baxter, M. J. et al. (2004). Exploring automatic grouping procedures in ceramic petrology. JAS, 31(9), 13251338. https://doi.org/10.1016/j.jas.2004.03.006.Google Scholar
Choleva, M. (2012). The first wheelmade pottery at Lerna: Wheel-thrown or wheel-fashioned? Hesperia, 81(3), 343381. https://doi.org/10.2972/hesperia.81.3.0343.CrossRefGoogle Scholar
Courty, M. A. & Roux, V. (1995). Identification of wheel throwing on the basis of ceramic surface features and microfabrics. JAS, 22, 1750. https://doi.org/10.1016/S0305-4403(95)80161-8.Google Scholar
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. EJM, 13(3), 621634. https://doi.org/10.1127/0935-1221/2001/0013-0621.CrossRefGoogle Scholar
Day, P. M., Kiriatzi, E., Tsolakidou, A. & Kilikoglou, V. (1999). Group therapy in crete: A comparison between analyses by NAA and thin section petrography of Early Minoan Pottery, JAS, 26, 10251036. https://doi.org/10.1006/jasc.1999.0424.Google Scholar
Demján, P., Pavúk, P. & Roosevelt, C. H. (2023). Laser-aided profile measurement and cluster analysis of ceramic shapes. J.FieldArchaeol, 48 (1), 118. https://doi.org/10.1080/00934690.2022.2128549.Google Scholar
Di Febo, R., Molera, J., Pradell, T., Vallcorba, O. & Capelli, C. (2017). Technological implications of neo-formed hematite crystals in ceramic lead glazes. STAR, 3 (2), International Symposium on Archaeometry 2016 (Kalamata, Greece): Proceedings. https://doi.org/10.1080/20548923.2017.1419675.Google Scholar
Donais, M. K. & George, D. B. (2018). X-Ray Fluorescence Spectrometry and Its Applications to Archaeology: An Illustrated Guide. New York: Momentum Press.Google Scholar
Drebushchak, V. A., Mylnikova, L. N. & Molodin, V. I. (2007). Thermogravimetric investigation of ancient ceramics: Metrological analysis of sampling. J.Therm.Anal.Calorim., 90, 73–9. https://doi.org/10.1007/s10973-007-8478-9.CrossRefGoogle Scholar
Drieu, L., Lepère, C. & Regert, M. (2020). The missing step of pottery chaîne opératoire: Considering post-firing treatments on ceramic vessels using macro- and microscopic observation and molecular analysis. J.Archaeol.MethodTheory, 27, 302326. https://doi.org/10.1007/s10816-019-09428-8.CrossRefGoogle Scholar
Duller, G. A. T. (2008). Luminescence Dating: Guidelines on Using Luminescence Dating in Archaeology. Swindon: English Heritage.Google Scholar
Dussubieux, L., Golitko, M. & Gratuze, B. (2016). Recent Advances in Laser Ablation ICP-MS for Archaeology. Heidelberg: Springer Press.10.1007/978-3-662-49894-1CrossRefGoogle Scholar
Dussubieux, L., Golitko, M., Williams, P. R. & Speakman, J. (2007). Laser ablation-inductively coupled plasma-mass spectrometry analysis applied to the characterization of Peruvian Wari ceramics. In Glascock, M. D., Speakman, R. J. & Popelka-Filcoff, R. S., eds., Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation. ACS Symposium Series 968. Washington, DC: American Chemical Society, pp. 349363.10.1021/bk-2007-0968.ch019CrossRefGoogle Scholar
Eckert, S. L. & James, W. D. (2011). Investigating the production and distribution of plain ware pottery in the Samoan archipelago with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). JAS, 38, 21552170. https://doi.org/10.1016/j.jas.2011.03.009.Google Scholar
Edwards, H. G. M., Vandenabeele, P. & Colomban, P. (2023). Raman Spectroscopy in Cultural Heritage Preservation. Cham: Springer.CrossRefGoogle Scholar
Fiorucci, M., Khoroshiltseva, M., Pontil, M. et al. (2020). Machine learning for cultural heritage: A survey. Pattern Recognition Letters, 133, 102108. https://doi.org/10.1016/j.patrec.2020.02.017.CrossRefGoogle Scholar
Fleming, S. (1979). Thermoluminescence Techniques in Archaeology. Oxford: Clarendon Press.Google Scholar
Frahm, E. & Doonan, R. C. P. (2013). The technological versus methodological revolution of portable XRF in archaeology. JAS, 40(2), 14251434. https://doi.org/10.1016/j.jas.2012.10.013.Google Scholar
Franklin, A. D., Prescott, J. R. & Scholefield, R. B. (1995). The mechanism of thermoluminescence in an Australian sedimentary quartz. J.Lumin., 63(5–6), 317326. https://doi.org/10.1016/0022-2313(94)00068-N.CrossRefGoogle Scholar
Froh, J. (2004). Archaeological ceramics studied by scanning electron microscopy. Hyperfine.Interact., 154, 159176. https://doi.org/10.1023/B:HYPE.0000032074.98045.cc.CrossRefGoogle Scholar
Gait, J., Bajnok, K., Szilágyi, V. et al. (2022). Quantitative 3D orientation analysis of particles and voids to differentiate hand-built pottery forming techniques using X-ray microtomography and neutron tomography. Archaeol.Anthropol.Scis, 14, 223. https://doi.org/0.1007/s12520-022-01688-y.CrossRefGoogle Scholar
Galli, A., Sibilia, E. & Martini, M. (2020). Ceramic chronology by luminescence dating: How and when it is possible to date ceramic artefacts. Archaeol.Anthropol.Scis, 12, 190. https://doi.org/https://doi.org/10.1007/s12520-020-01140-z.CrossRefGoogle Scholar
Gehres, B. & Querré, G. (2018). New applications of LA–ICP–MS for sourcing archaeological ceramics: Microanalysis of inclusions as fingerprints of their origin. Archaeometry, 60(4), 750763. https://doi.org/10.1111/arcm.12338.CrossRefGoogle Scholar
Giussani, B., Monticelli, D. & Rampazzi, L. (2009). Role of laser ablation – inductively coupled plasma – mass spectrometry in cultural heritage research: A review. Anal.Chim.Acta, 635, 621. https://doi.org/10.1016/j.aca.2008.12.040.CrossRefGoogle ScholarPubMed
Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In Neff, H., eds., Chemical Characterization of Ceramic Pastes in Archaeology. Madison: Prehistory Press, pp. 1126.Google Scholar
Glascock, M. D. & Neff, H. (2003). Neutron activation analysis and provenance research in archaeology. Meas.Sci.Technol., 14(9), 15161526. https://doi.org/10.1088/0957-0233/14/9/304.CrossRefGoogle Scholar
Glaus, R., Koch, J. & Günther, D. (2012). Portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry. Anal.Chem., 84(12), 53585364. https://doi.org/10.1021/ac3008626.CrossRefGoogle ScholarPubMed
Gliozzo, E. (2020). Ceramic technology: How to reconstruct the firing process. Archaeol.Anthropol.Scis, 12, 260. https://doi.org/10.1007/s12520-020-01133-y.CrossRefGoogle Scholar
Gliozzo, E., Kirkman, I. W., Pantos, E. & Memmi Turbanti, I. (2004). Black gloss pottery: Production sites and technology in northern Etruria, part II: Gloss technology. Archaeometry, 46, 227246. https://doi.org/10.1111/j.1475-4754.2004.00154.x.CrossRefGoogle Scholar
Göksu, H. Y., Wieser, A. & Regulla, D. F. (1989). 110ºC TL peak records the ancient heat treatment of flint. AncientTL, 7(1), 1517. http://ancienttl.org/ATL_07-1_1989/ATL_07-1_Goksu_p15-17.pdf.Google Scholar
Golitko, M. & Dussubieux, L. (2017). Inductively coupled plasma-mass spectrometry (ICPMS) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). In Hunt, A., ed., The Oxford Handbook of Archaeological Ceramic Analysis. Oxford: Oxford University Press, pp. 399423.Google Scholar
Gosselain, O. P. & Livingstone Smith, A. (2005). The source: Clay selection and processing practices in sub-Saharan Africa. In Livingstone Smith, A., Bosquet, D. & Martineau, R., eds., Pottery Manufacturing Processes: Reconstitution and Interpretation. BAR-IS 1349. Oxford: BAR, pp. 3347.Google Scholar
Gratuze, B., Blet-Lemarquand, M. & Barrandon, J. N. (2001). Mass spectrometry with laser sampling: A new tool to characterize archaeological materials. J.Radioanal.Nucl.Chem., 247, 645656. https://doi.org/10.1023/A:1010623703423.CrossRefGoogle Scholar
Gualteri, S. (2020). Ceramic raw materials: How to establish the technological suitability of a raw material. Archaeol.Anthropol.Scis, 12, 183. https://doi.org/10.1007/s12520-020-01135-w.CrossRefGoogle Scholar
Hall, M. (2017). X-ray fluorescence-energy dispersive (ED-XRF) and wavelength dispersive (WD-XRF) spectrometry. In Hunt, A., eds., The Oxford Handbook of Archaeological Ceramic Analysis. New York: Oxford University Press, pp. 343381.Google Scholar
Harbottle, G. (1976). Activation analysis in archaeology. In Newton, G. W. A., ed., Radiochemistry 3. London: The Chemical Society, pp. 3372.Google Scholar
Hazenfratz-Marks, R. (2017). Evaluating data: Uncertainty in ceramic analysis. In Hunt, A., ed., The Oxford Handbook of Archaeological Ceramic Analysis. New York: Oxford University Press, pp. 386409.Google Scholar
Heaney, P. J. (1994). Structure and chemistry of the low-pressure silica polimorphs. In Heaney, P. J., Prewitt, C. T. & Gibbs, G. V., eds., Silica. Physical Behavior, Geochemistry and Materials Applications. Washington, DC: Mineralogical Society of America, pp. 140.10.1515/9781501509698CrossRefGoogle Scholar
Heimann, R. (2017). X-ray powder diffraction (XRPD). In Hunt, A., ed., The Oxford Handbook of Archaeological Ceramic Analysis. New York: Oxford University Press, pp. 327341.Google Scholar
Heimann, R. B. & Maggetti, M. (1981). Experiments on simulated burial of calcareous terra sigillata: Mineralogical changes – preliminary results. BMOP, 19, 163177.Google Scholar
Hein, A. & Kilikoglou, V. (2017). Compositional variability of archaeological ceramics in the Eastern Mediterranean and implications for the design of provenance studies. JASRep, 16, 564572. https://doi.org/10.1016/j.jasrep.2017.03.020.Google Scholar
Hein, A. & Kilikoglou, V. (2020a). Ceramic raw materials: How to recognize them and locate the supply basins: Chemistry. Archaeol.Anthropol.Scis., 12, 180. https://doi.org/10.1007/s12520-020-01129-8.CrossRefGoogle Scholar
Hein, A. & Kilikoglou, V. (2020b). Digital modeling of function and performance of transport amphorae. IJCES, 2, 187200. https://doi.org/10.1002/ces2.10056.Google Scholar
Hein, A. & Kilikoglou, V. (2025). Modelling the material performance of ceramic vessels in view of their function and utilization. Proceedings of the CAA 21, Tübingen: Tübingen University Press.Google Scholar
Hein, A., Karatasios, I., Müller, N. S. & Kilikoglou, V. (2013). Heat transfer properties of pyrotechnical ceramics used in ancient metallurgy. Thermochim.Acta, 573, 8794. https://doi.org/10.1016/j.tca.2013.09.024.CrossRefGoogle Scholar
Hein, A., Müller, N. S., Day, P. M. & Kilikoglou, V. (2008). Thermal conductivity of archaeological ceramics: The effect of inclusions, porosity and firing temperature. Thermochim.Acta, 480, 3542. https://doi.org/10.1016/j.tca.2008.09.012.CrossRefGoogle Scholar
Hein, A., Vekinis, G. & Kilikoglou, V. (2022). Modeling of biaxial flexure tests of transport amphorae with the finite element method: Fracture strength, deformation and stress distribution. RINENG, 15, 100508. https://doi.org/10.1016/j.rineng.2022.100508.Google Scholar
Hughes, T. J. R. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover.Google Scholar
Ionescu, C. & Hoeck, V. (2020). Ceramic technology: How to investigate surface finishing. Archaeol.Anthropol.Sci, 12, 204. https://doi.org/10.1007/s12520-020-01144-9.CrossRefGoogle Scholar
Ionescu, C., Fischer, C., Hoeck, V. & Lüttge, A. (2019). Discrimination of ceramic surface finishing by vertical scanning interferometry. Archaeometry, 61(1), 3142. https://doi.org/10.1111/arcm.12410.CrossRefGoogle Scholar
Janssen, K. (2004). X-ray based methods of analysis. In Janssens, K. & Van Grieken, R., eds., Non-destructive Microanalysis of Cultural Heritage Materials. Compr.Anal.Chem.Series XLII. Amsterdam: Elsevier, pp. 129226. https://doi.org/10.1016/S0166-526X(04)80008-4.CrossRefGoogle Scholar
Jehlička, J. & Culka, A. (2022). Critical evaluation of portable Raman spectrometers: From rock outcrops and planetary analogs to cultural heritage – A review. Anal.Chim.Acta, 1209, 339027. https://doi.org/10.1016/j.aca.2021.339027.CrossRefGoogle ScholarPubMed
Jenkins, R. (1999). X-Ray Fluorescence Spectrometry. New York: Wiley.10.1002/9781118521014CrossRefGoogle Scholar
Karasik, A. & Smilansky, U. (2008). 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory. JAS, 35, 11481168. https://doi.org/10.1016/j.jas.2007.08.008.Google Scholar
Karl, S., Jungblut, D., Mara, H., Wittum, G. & Krömker, S. (2014). Insights into manufacturing techniques of archaeological pottery: Industrial X-ray computed tomography as a tool in the examination of cultural material. In Martinón-Torres, M., ed., Craft and Science: International Perspectives on Archaeological Ceramics. Doha: Bloomsbury Qatar Foundation, pp. 253261.Google Scholar
Käser, D. (2015). Redesign of a portable laser ablation setup to allow sampling of ancient Chinese Jade and Porcelain (Master Thesis), ETH Zürich. www.research-collection.ethz.ch/bitstream/handle/20.500.11850/189964/Masterthesis_DeboraK%C3%A4ser.pdf?sequence=1Google Scholar
Kennett, D. J., Sakai, S., Neff, H., Gossett, R. & Larson, D. O. (2002). Compositional characterization of prehistoric ceramics: A new approach. JAS, 29(5), 443455. https://doi.org/10.1006/jasc.2001.0737.Google Scholar
Kibaroğlu, M. & Thumm-Doğrayan, D. (2013). Trojan pithoi: A petrographic approach to provenance of Bronze Age storage vessels from Troy. Appl.ClaySci., 82, 4452. https://doi.org/10.1016/j.clay.2013.06.023.CrossRefGoogle Scholar
Kibaroğlu, M., Kozal, E., Klügel, A., Hartmann, G. & Monien, P. (2019). New evidence on the provenance of Red Lustrous Wheel-made Ware (RLW): Petrographic, elemental and Sr-Nd isotope analysis. JASRep., 24, 412433. https://doi.org/10.1016/j.jasrep.2019.02.004.Google Scholar
Kibaroğlu, M., Sagona, A. & Satır, M. (2011). Petrographic and geochemical investigations of the Late Prehistoric ceramics from Sos Höyük, Erzurum (Eastern Anatolia). JAS, 38, 30723084. https://doi.org/10.1016/j.jas.2011.07.006.Google Scholar
Kibaroğlu, M., Satır, M. & Kastl, G. (2009). Petrographic and geochemical analysis on the provenance of the Middle Bronze and Late Bronze/Early Iron Age ceramics from Didi Gora and Udabno I, eastern Georgia. JAS, 36, 24632474. https://doi.org/10.1016/j.jas.2009.07.005.Google Scholar
Kilikoglou, V., Vekinis, G., Maniatis, Y. & Day, P. M. (1998). Mechanical performance of quartz-tempered ceramics: Part I, strength and toughness. Archaeometry, 40(2), 261279. https://doi.org/10.1111/j.1475-4754.1998.tb00837.x.CrossRefGoogle Scholar
Knaf, A. C. S., Koornneef, J. M. & Davies, G. R. (2017). ‘Non-invasive’ portable laser ablation sampling of art and archaeological materials with subsequent Sr–Nd isotope analysis by TIMS using 1013 Ω amplifiers. J.Anal.At.Spectrom., 32, 22102216. https://doi.org/10.1039/c7ja00191f.CrossRefGoogle Scholar
Kontopoulou, D., Aidona, E., Ioannidis, N., Polymeris, G. S. & Tsolakis, S. (2015). Archaeo-magnetic study and thermoluminescence dating of protobyzantine kilos (Megali Kypsa, North Greece). JASRep., 2, 156168. https://doi.org/10.1016/j.jasrep.2015.01.007.Google Scholar
Kosiba, S., Quave, K. E., Sharratt, N. et al. (2023). Local knowledge and imperial art: A preliminary LA-ICP-MS analysis of clay preference and ceramic production practices in ancient Cuzco (ca. 1100–1550 CE). JASRep., 48, 103870. https://doi.org/10.1016/j.jasrep.2023.103870.Google Scholar
Koul, D. K. (2006). Role of alkali ions in limiting the capacity of the 110ºC peak of quartz to remember the firing temperature. Appl.Radiat.Isot., 64(1), 110115. https://doi.org/10.1016/j.apradiso.2005.07.008.CrossRefGoogle Scholar
Koul, D. K., Chougaonkar, M. P. & Polymeris, G. S. (2010). Applicability of OSL pre-dose phenomenon of quartz in the estimation of equivalent dose. Radiat.Meas., 45, 1521. https://doi.org/10.1016/j.apradiso.2005.07.008.CrossRefGoogle Scholar
Kozatsas, J., Kotsakis, K., Sagris, D. & David, K. (2018). Inside out: Assessing pottery forming techniques with micro-CT scanning. An example, from Middle Neolithic Thessaly. JAS, 100, 102119. https://doi.org/10.1016/j.jas.2018.10.007.Google Scholar
Kuzmin, Y. V. (2015). The origins of pottery in east Asia: Updated analysis (the 2015 state-of the art). Doc.Preahist., 42, 111. https://doi.org/10.4312/dp.42.1.Google Scholar
Liritzis, I. (2011). Surface dating by luminescence: An overview. Geochronometria, 38(3), 292302.10.2478/s13386-011-0032-7CrossRefGoogle Scholar
Liritzis, I., Aravantinos, V., Polymeris, G. S. et al. (2015). Witnessing prehistoric Delphi by Luminescence Dating. Comptes.Rendus.Palevol, 14, 219232.10.1016/j.crpv.2014.12.007CrossRefGoogle Scholar
Liritzis, I., Stamoulis, K., Papachristodoulou, Ch. & Ioannides, K. G. (2013). A re-evaluation of radiation dose rate conversion factors. MAA, 13(3), 115.Google Scholar
Little, N. C., Kosakowsky, L. J., Speakman, R. J., Glascock, M. D. & Lohse, J. C. (2004). Characterization of Maya pottery by INAA and ICP-MS. J.Radioanal.Nucl.Chem., 262(1), 103110. https://doi.org/10.1023/B:JRNC.0000040860.14672.89.CrossRefGoogle Scholar
Llorca, J., González, C., Molina-Aldareguía, J. M. et al. (2011). Multiscale modeling of composite materials: A roadmap towards virtual testing. Advanced Materials, 23, 51305147. https://doi.org/10.1002/adma.201101683.CrossRefGoogle ScholarPubMed
Log, T. & Gustafsson, S. E. (1995). Transient Plane Source (TPS) Technique for measuring thermal transport: Properties of building materials. Fire and Materials, 19, 4349. https://doi.org/10.1002/fam.810190107.CrossRefGoogle Scholar
Maggetti, M. (1982). Phase analysis and its significance for technology and origin. In Olin, J. S. & Franklin, A. D., eds., Archaeological Ceramics. Washington, DC: Smithsonian Institution Press, pp. 121133.Google Scholar
Maggetti, M., Neururer, Ch. & Ramseyer, D. (2011). Temperature evolution inside a pot during experimental surface (bonfire) firing. Appl.ClaySci., 53, 500508. https://doi.org/10.1016/j.clay.2010.09.013.CrossRefGoogle Scholar
Mantler, M. & Schreiner, M. (2000). X-ray fluorescence spectrometry in art and archaeology. X-RaySpectrom., 29, 317. https://doi.org/10.1002/(SICI)1097-4539(200001/02)29:1<3::AID-XRS398>3.0.CO;2-O.Google Scholar
Maritan, L., Holakooei, P. & Mazzoli, C. (2015). Cluster analysis of XRPD data in ancient ceramics: What for? Appl.ClaySci., 114, 540554. https://doi.org/10.1016/j.clay.2015.07.016.CrossRefGoogle Scholar
Martín-Fernández, J. A., i Garrigós J., Buxeda & Pawlowsky-Glahn, V. (2015). Logratio analysis in archeometry: Principles and methods. In Barcelo, J. A. & Bogdanovic, I., eds., Mathematics and Archaeology. Boca Raton: CRC Press, pp. 178189.Google Scholar
Matin, M., Tite, M. & Watson, O. (2018). On the origins of tin-opacified ceramic glazes: New evidence from early Islamic Egypt, the Levant, Mesopotamia, Iran, and Central Asia. JASRep., 97, 4266. https://doi.org/10.1016/j.jas.2018.06.011.Google Scholar
Medeghini, L., Mignardi, S., Vito, C. et al. (2013). The key role of micro-Raman spectroscopy in the study of ancient pottery: The case of pre-classical Jordanian ceramics from the archaeological site of Khirbet al-Batrawy. EJM, 25, 881893. https://doi.org/10.1127/0935-1221/2013/0025-2332.CrossRefGoogle Scholar
Molera, J., Bayes, C., Roura, P., Crespo, D. & Pradell, T. (2007). Key parameters in the production of medieval luster colors and shines. JACerS, 90, 22452254. https://doi.org/10.1111/j.1551-2916.2007.01563.x.Google Scholar
Molera, J., Climent-Font, A., Garcia, G. et al. (2021). Experimental study of historical processing of cobalt arsenide ore for colouring glazes (15–16th century Europe). JASRep., 36, 10279. https://doi.org/10.1016/j.jasrep.2021.102797.Google Scholar
Molera, J., Coll, J., Labrador, A. & Pradell, T. (2013). Manganese brown decorations in 10th to 18th century Spanish tin glazed ceramics. Appl.ClaySci., 82, 8690. https://doi.org/10.1016/j.clay.2013.05.018.CrossRefGoogle Scholar
Molera, J., Colomer, M., Vallcorba, O. & Pradell, T. (2022). Manganese crystalline phases developed in high lead glazes during firing. J.Eur.Ceram.Soc., 49, 40064015. https://doi.org/10.1016/J.JEURCERAMSOC.2022.03.028.CrossRefGoogle Scholar
Molera, J., Pradell, T., Martinez-Manent, S. & Vendrell-Saz, M. (1993). The growth of sanidine crystals in the lead of glazes of Hispano-Moresque pottery. Appl.ClaySci., 7, 483491. https://doi.org/10.1016/0169-1317(93)90017-U.CrossRefGoogle Scholar
Molera, J., Pradell, T., Salvado, N. & Vendrell-Saz, M. (1999). Evidence of tin oxide recrystallization in opacified lead glazes. JACerS, 82, 28712875. https://doi.org/10.1111/j.1151-2916.1999.tb02170.x.Google Scholar
Molera, J., Pradell, T., Salvado, N. & Vendrell-Saz, M. (2001). Interactions between clay bodies and lead glazes. JACerS, 84, 11201128. https://doi.org/10.1111/j.1151-2916.2001.tb00799.x.Google Scholar
Molera, J., Colomer, M., Vallcorba, O. & Pradell, T. (2025). Iron-manganese crystalline phases developed in high lead glazes during firing. J.Eur.Ceram.Soc., 45, 117244. https://doi.org/10.1016/j.jeurceramsoc.2025.117244.CrossRefGoogle Scholar
Montana, G. (2020). Ceramic raw materials: How to recognize them and locate the supply basins – mineralogy, petrography. Archaeol.Anthropol.Scis, 12, 180. https://doi.org/10.1007/s12520-020-01130-1.Google Scholar
Moon, D. H., Kim, S. J., Nam, S. W. & Cho, H. G. (2021). X-ray diffraction analysis of clay particles in ancient Baekje Black pottery: Indicator of the firing parameters. Minerals, 11, 1239. https://doi.org/10.3390/min11111239.CrossRefGoogle Scholar
Moropoulou, A., Bakolas, A. & Bisbikou, K. (1995). Thermal-analysis as a method of characterizing ancient ceramic technologies. Thermochim.Acta, 260, 743753. https://doi.org/10.1016/0040-6031(95)02570-7.CrossRefGoogle Scholar
Müller, N. S., Hein, A., Georgakopoulou, M., Kilikoglou, V. & Kiriatzi, E. (2018). The effect of inter- and intra-source variation: A comparison between WDXRF and NAA data from Cretan clay deposits. JASRep., 21, 929937. https://doi.org/10.1016/j.jasrep.2017.09.023.Google Scholar
Müller, N. S., Kilikoglou, V., Day, P. M. & Vekinis, G. (2010). The influence of temper shape on the mechanical properties of archaeological ceramics. J.Eur.Ceram.Soc., 30, 24572465. https://doi.org/10.1016/j.jeurceramsoc.2010.04.039.CrossRefGoogle Scholar
Müller, N. S., Kilikoglou, V., Day, P. M. & Vekinis, G. (2014). Thermal shock resistance of tempered archaeological ceramics. In Martinón-Torres, M., ed., Craft and Science: international Perspectives on Archaeological Ceramics. Doha: Bloomsbury Qatar Foundation, pp. 263270.Google Scholar
Müller, N. S., Vekinis, G., Day, P. M. & Kilikoglou, V. (2015). The influence of microstructure and texture on the mechanical properties of rock tempered archaeological ceramics. J.Eur.Ceram.Soc., 35, 831843. https://doi.org/10.1016/j.jeurceramsoc.2014.09.025.CrossRefGoogle Scholar
Müller, N. S., Vekinis, G. & Kilikoglou, V. (2016). Impact resistance of archaeological ceramics: The influence of firing and temper. JASRep., 7, 519525. https://doi.org/10.1016/j.jasrep.2015.08.039.Google Scholar
Nakai, I. & Abe, Y. (2012). Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl.Phys.A, 106(2), 279293. https://doi.org/10.1007/s00339-011-6694-4.CrossRefGoogle Scholar
Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In Ciliberto, E. & Spoto, G., eds., Modern Analytical Methods in Art and Archaeology. New York: Wiley, pp. 81134.Google Scholar
Nelson, M. H., Gray, H. J., Johnson, J. A. et al. (2015). User guide for luminescence sampling in archaeological and geological contexts. Adv.Archaeol.Pract., 3(2), 166177.10.7183/2326-3768.3.2.166CrossRefGoogle Scholar
Nerantzis, N., Kazakis, N. A., Sfampa, I. K. et al. (2017). An integrated approach to the characterization and dating of furnaces in smelting sites in Macedonia, Greece. JASRep., 16, 6572. http://dx.doi.org/10.1016/j.jasrep.2017.09.027.Google Scholar
Noll, W., Holm, R. & Born, L. (1975). Painting of ancient ceramics. Angew.Chem.,Int.Ed., 14(9), 603613. https://doi.org/10.1002/anie.197506021.CrossRefGoogle Scholar
Numrich, M., Schwall, C., Lockhoff, N. et al. (2023). Portable laser ablation sheds light on Early Bronze Age gold treasures in the old world: New insights from Troy, Poliochni, and related finds. JAS, 149, 105694. https://doi.org/10.1016/j.jas.2022.105694.Google Scholar
Oniya, E. O., Polymeris, G. S., Tsirliganis, N. C. & Kitis, G. (2012). On the pre-dose sensitization of the various components of the LM-OSL signal of annealed quartz; comparison with the case of 110 °C TL peak. Radiat.Meas., 47, 864869. https://doi.org/10.1016/j.radmeas.2012.03.009.CrossRefGoogle Scholar
Özkaya, Ö. A. & Böke, H. (2009). Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon. Mater.Charact., 60(9), 9951000. https://doi.org/10.1016/j.matchar.2009.04.003.CrossRefGoogle Scholar
Pampuch, R. (2014). An Introduction to Ceramics. Cham: Springer.10.1007/978-3-319-10410-2CrossRefGoogle Scholar
Papachristodoulou, C., Oikonomou, A., Ioannides, K. & Gravani, K. (2006). A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis. Anal.Chim.Acta, 573 –574, 347353. https://doi.org/10.1016/j.aca.2006.02.012.CrossRefGoogle ScholarPubMed
Papageorgiou, I. (2020). Ceramic investigation: How to perform statistical analyses. Archaeological and Anthropological Sciences, 12, 210. https://doi.org/10.1007/s12520-020-01142-x.CrossRefGoogle Scholar
Pappalardo, L. Pappalardo, G., Amorini, F. et al. (2008). The complementary use of PIXE-α and XRD non-destructive portable systems for the quantitative analysis of painted surfaces. X-RaySpectrom., 37(4), 370375. https://doi.org/10.1002/xrs.1040.Google Scholar
Perlman, I. & Asaro, F. (1969). Pottery analysis by neutron activation. Archaeometry, 11(2), 2152. https://doi.org/10.1111/j.1475-4754.1969.tb00627.x.CrossRefGoogle Scholar
Podoba, R., Stubna, I., Lukovicova, J. & Bacik, P. (2012). The firing temperature of Romanesque Brick from Pác. J.Civ.Eng., 7, 7986. https://doi.org/10.2478/v10299-012-0009-y.Google Scholar
Pollard, A. M. & Heron, C. (1996). Archaeological Chemistry. Cambridge: Royal Society of Chemistry.10.1039/9781847550156CrossRefGoogle Scholar
Pollard, A. M., Batt, C. M., Stern, B. & Young, S. M. M. (2007). Analytical Chemistry in Archaeology. Cambridge: Cambridge University Press.10.1017/CBO9780511607431CrossRefGoogle Scholar
Polymeris, G. S., Sakalis, A., Papadopoulou, D. et al. (2007). Firing temperature of pottery using TL and OSL techniques. NIM-A, 580(1), 747750. https://doi.org/10.1016/j.nima.2007.05.139.CrossRefGoogle Scholar
Polymeris, G. S., Kiyak, N. G., Koul, D. K. & Kitis, G. (2014). The firing temperature of pottery from Ancient Mesopotamia, Turkey, using luminescence methods: A case study for different grain-size fractions. Archaeometry, 56(6), 805817. https://doi.org/10.1111/arcm.12044.CrossRefGoogle Scholar
Potter, D. A. (2008). Commercial perspective on the growth and development of the quadrupole ICPMS market. J.Anal.At.Spectrom., 23, 690693. https://doi.org/10.1039/B717322A.CrossRefGoogle Scholar
Potts, P. (2008). Portable X-ray fluorescence spectrometry: Capabilities for In Situ Analysis. In Potts, P. & West, M., eds., Portable X-Ray Fluorescence Spectrometry: Capabilities for In Situ Analysis. Cambridge: RSC, pp. 112.10.1039/9781847558640CrossRefGoogle Scholar
Pradell, T. (2016). Lustre and nanostructures-ancient technologies revisited. In Dillmann, P., Bellot-Gurlet, L. & Nenner, I., eds., Nanoscience and Cultural Heritage. Dordrecht: Atlantis Press, pp. 339. https://doi.org/10.2991/978-94-6239-198-7_1.Google Scholar
Pradell, T. & Molera, J. (2020). Ceramic technology: How to characterize ceramic glazes. Archaeol.Anthropol.Scis, 12, 189. https://doi.org/10.1007/s12520-020-01136-9.CrossRefGoogle Scholar
Pradell, T., Molera, J., Roque, J. et al. (2005). Ionic-exchange mechanism in the formation of medieval luster decorations. JACerS, 88, 12811289. https://doi.org/10.1111/j.1551-2916.2005.00223.x.Google Scholar
Pradell, T., Molera, J., Smith, A. D., & Tite, M. S. (2008). Early Islamic lustre from Egypt, Syria and Iran (10th to 13th century AD). J.Archaeol.Sci. 35(9), 26492662. https://doi.org/10.1016/j.jas.2008.05.011CrossRefGoogle Scholar
Pradell, T., Molera, J., Salvadó, N. & Labrador, A. (2010). Synchrotron radiation micro-XRD in the study of glaze technology. Appl.Phys.AMater.Sci.Process., 99, 407417. https://doi.org/10.1007/s00339-010-5639-7.CrossRefGoogle Scholar
Pradell, T., Molina, G., Molera, J., Pla, J. & Labrador, A. (2013). The use of micro-XRD for the study of glaze color decorations. Appl.Phys.AMater.Sci.Process., 111, 121127. https://doi.org/10.1007/s00339-012-7445-x.CrossRefGoogle Scholar
Pradell, T., Pavlov, R. S., Carolina Gutiérrez, P., Climent-Font, A. & Molera, J. (2012). Composition, nanostructure, and optical properties of silver and silver-copper lusters. J.Appl.Phys., 112, 054307. https://doi.org/10.1063/1.4749790.CrossRefGoogle Scholar
Preusser, F., Chithambo, M., Götte, T. et al. (2010). Quartz as a natural luminescence dosimeter. EarthSci.Rev., 97, 184214. https://doi.org/10.1016/j.earscirev.2009.09.006.CrossRefGoogle Scholar
Quinn, P. S. (2022). Thin Section Petrography, Geochemistry and Scanning Electron Microscopy of Archaeological Ceramics. Oxford: Archaeopress. https://doi.org/10.2307/j.ctv2nwq8x4.CrossRefGoogle Scholar
Rambaldi, E., Pabst, W., Gregorová, E., Prete, F. & Bignozzi, M. C. (2017). Elastic properties of porous porcelain stoneware tiles. Ceram.Int., 43, 69196924. https://doi.org/10.1016/j.ceramint.2017.02.114.CrossRefGoogle Scholar
Resano, M., Garcia-Riuz, E. & Vanhaecke, F. (2010). Laser ablation – inductively coupled plasma mass spectrometry in archaeometric research. MassSpectrom.Rev., 29, 5578. https://doi.org/10.1002/mas.20220.Google ScholarPubMed
Rice, P. M. (1987). Pottery Analysis: A Sourcebook. Chicago: University of Chicago Press.Google Scholar
Romano, F. P., Pappalardo, L., Masini, N., Pappalardo, G., Rizzo, F. (2011). The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem.J., 99(2), 449453. https://doi.org/10.1016/j.microc.2011.06.020.CrossRefGoogle Scholar
Roux, V. (2017). Ceramic manufacture: The chaîne opératoire approach. In Hunt, A., ed., The Oxford Handbook of Archaeological Ceramic Analysis. Oxford: Oxford University Press, pp. 101114.Google Scholar
Roux, V. in collaboration with Courty, M. A. (2019). Ceramics and Society: A Technological Approach to Archaeological Assemblages. Cham: Springer Nature. https://doi.org/10.1007/978-3-030-03973-8.CrossRefGoogle Scholar
Rueff, B., Debels, P., Vargiolu, R., Zahouani, H. & Procopiou, H. (2021). Reading ceramic surfaces: Characterisation of surface treatments towards functional identification of vases. JASRep. 38, 103021. https://doi.org/10.1016/j.jasrep.2021.103021.Google Scholar
Salinas, E. & Pradell, T. (2020). Madīnat al-Zahrā’ or Madīnat Qurtuba? First evidences of the Caliphate tin glaze production of ‘verde y manganeso’ ware. Archaeol.Anthropol.Sci., 12, 207. https://doi.org/10.1007/s12520-020-01170-7.CrossRefGoogle Scholar
Salinas, E., Pradell, T. & Tite, M. (2019). Tracing the tin-opacified yellow glazed ceramics in the wester Islamic world: The findings at Madīnat al-Zahrā’. Archaeol.Anthropol.Sci., 11, 777787. https://doi.org/10.1007/s12520-017-0562-x.CrossRefGoogle Scholar
Salinas, E., Reynolds, P. & Pradell, T. (2022). Technological changes in the glazed wares of northern Tunisia in the transition from Fatimid to Zirid rule. Archaeol.Anthropol.Sci., 14, 224. https://doi.org/10.1007/s12520-022-01690-4.CrossRefGoogle Scholar
Sanger, M. C. (2016). Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: Studies from the Late Archaic American Southeast. JASRep, 9, 586598. https://doi.org/10.1016/j.jasrep.2016.08.005.Google Scholar
Sanjurjo-Sánchez, J., Gómez-Heras, M. & Polymeris, G. S. (2013). Estimating maximum tempe-ratures attained during fires in building stoneworks by thermoluminescence: A case study from Uncastillo, Saragossa (Spain). MAA, 13, 145153. http://hdl.handle.net/10261/115402.Google Scholar
Sanjurjo-Sanchez, J., Montero Fenollos, J. L. & Polymeris, G. S. (2018). Technological aspects of Mesopotamian Uruk pottery: Estimating firing temperatures using mineralogical methods, thermal analysis and luminescence techniques. Archaeol.Anthropol.Sci., 10, 849864. https://doi.org/10.1007/s12520-016-0409-x.CrossRefGoogle Scholar
Scarpelli, R., Clark, R. J. H. & De Francesco, A. M. (2014). Archaeometric study of black-coated pottery from Pompeii by different analytical techniques. Spectrochim.ActaPart A, 120, 6066. https://doi.org/10.1016/j.saa.2013.09.139.CrossRefGoogle ScholarPubMed
Schiffer, M. B. (1990). The influence of surface treatment on heating effectiveness of ceramic vessels. JAS, 17, 373381. https://doi.org/10.1016/0305-4403(90)90002-M.Google Scholar
Schiffer, M. B., Skibo, J. M., Boelke, T. C., Neupert, M. A. & Aronson, M. (1994). New perspectives on experimental archaeology: Surface treatments and thermal response of the clay cooking pot. Am. Antiq., 59(2), 197217. https://doi.org/10.2307/281927.CrossRefGoogle Scholar
Schmandt-Besserat, D. (1977). The earliest uses of clay in Syria. Expedition, 19(3), 2842.Google Scholar
Schramm, R. (2012). X-Ray Fluorescence Analysis: Practical and Easy. Bedburg-Hau: Fluxana.Google Scholar
Schwedt, A., Mommsen, H., Zacharias, N. & Buxeda i Garrigós, J. (2006). Analcime crystallization and compositional profile – comparing approaches to detect post-depositional alteration in archaeological pottery. Archaeometry, 48, 237251. https://doi.org/10.1111/j.1475-4754.2006.00254.x.CrossRefGoogle Scholar
Sciau, P., Sanchez, C. & Gliozzo, E. (2020). Ceramic technology: How to characterize terra sigillata ware. Archaeol.Anthropol.Sci, 12, 211. https://doi.org/10.1007/s12520-020-01137-8.CrossRefGoogle Scholar
Seman, S., Dussubieux, L., Cloquet, C. & Pryce, T. (2020). Strontium isotope analysis in ancient glass from South Asia using portable laser ablation sampling. Archaeometry, 63(1), 88104. https://doi.org/10.1111/arcm.12618.CrossRefGoogle Scholar
Sharratt, N., Golitko, M. & Williams, P. R. (2015). Pottery production, regional exchange, and state collapse during the Middle Horizon (A.D. 500–1000): LA-ICP-MS analyses of Tiwanaku pottery in the Moquegua Valley, Peru. J.FieldArchaeol., 40, 397412. https://doi.org/10.1179/2042458214Y.0000000001.Google Scholar
Shoval, S. (2017). The application of LA-ICP-MS, EPMA and Raman micro-spectroscopy methods in the study of Iron Age Phoenician Bichrome pottery at Tel Dor. JASRep., 21, 938951. https://doi.org/10.1016/j.jasrep.2017.03.040.Google Scholar
Shoval, S. & Gilboa, A. (2016). PXRF analysis of pigments in decorations on ceramics in the East Mediterranean: A test-case on Cypro-Geometric and Cypro-Archaic Bichrome ceramics at Tel Dor, Israel. JASRep., 7, 472479. https://doi.org/10.1016/j.jasrep.2015.08.011.Google Scholar
Shoval, S., Beck, P., Kirsch, Y. et al. (1991). Rehydroxylation of clay minerals and hydration in ancient pottery from the ‘land of Geshur’. J.Therm.Anal., 37, 15791592. https://doi.org/10.1007/BF01913490.CrossRefGoogle Scholar
Shugar, A. N. & Mass, J. L. (2014). Handheld XRF for Art and Archaeology. Ithaca: Cornell University Press.Google Scholar
Sinopoli, C. M. (1991). Approaches to Archaeological Ceramics. New York: Plenum press.10.1007/978-1-4757-9274-4CrossRefGoogle Scholar
Skibo, J. M., Schiffer, M. B. & Reid, K. C. (1989). Organic-tempered pottery: An experimental study. Am.Antiq., 54(1), 122146. https://doi.org/10.2307/281335.CrossRefGoogle Scholar
Skibo, J. M., Butts, T. C. & Schiffer, M. B. (1997). Ceramic surface treatment and abrasion resistance: An experimental study. JAS, 24, 311317. https://doi.org/10.1006/jasc.1996.0115.Google Scholar
Soffer, O., Adovasio, J. M. & Hyland, D. C. (2000). The ‘Venus’ Figurines. Curr.Anth., 41(4), 511537. https://doi.org/10.1086/317381.CrossRefGoogle Scholar
Speakman, R. J. & Neff, H. (2002). Evaluation of painted pottery from the Mesa Verde region using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). Am.Antiq., 67(1), 137144. https://doi.org/10.2307/2694882.CrossRefGoogle Scholar
Spencer, J. Q. G. & Sanderson, D. C. W. (2012). Decline in firing technology or poorer fuel resources? High-temperature thermoluminescence (HTTL) archaeothermometry of Neolithic ceramics from Pool, Sanday, Orkney. JAS, 39, 35423552. https://doi.org/10.1016/j.jas.2012.05.036.Google Scholar
Sterba, J. H. (2018). A workflow for neutron activation analysis of archaeological ceramics at the Atominstitut in Vienna, Austria. J.Radioanal.Nucl.Chem., 316, 753759. https://doi.org/10.1007/s10967-018-5803-7.CrossRefGoogle ScholarPubMed
Sunta, C. M. & David, M. (1982). Firing temperature of pottery from pre-dose sensitization of TL. PACT, 6, 460467.Google Scholar
Tema, E., Hatakeyama, T., Ferrara, E. et al. (2024). Insights on the firing temperature of ancient ceramic coffins through a multi-analytical approach: The case of the Sada Nishizuka Kofun, Japan. J.Cult.Herit., 66, 265270. https://doi.org/10.1016/j.culher.2023.11.022.CrossRefGoogle Scholar
Thér, R. (2016). Identification of pottery forming techniques using quantitative analysis of the orientation of inclusions and voids in thin sections. Archaeometry, 58, 222238. https://doi.org/10.1111/arcm.12166.CrossRefGoogle Scholar
Thér, R. (2020). Ceramic technology: How to reconstruct and describe pottery-forming practices. Archaeol. Anthropol. Scis, 12, 172. https://doi.org/10.1007/s12520-020-01131-0.CrossRefGoogle Scholar
Thomas, R. (2013). Practical Guide to ICP-MS: A Tutorial for Beginners (3rd Ed.). Roca Raton: CRC Press.10.1201/b14923CrossRefGoogle Scholar
Tite, M. S. (1992). The impact of electron microscopy on ceramic studies. Proceedings of the British Academy, 22, 111131.Google Scholar
Tite, M. S. (2008). Ceramic production, provenance and use – A review. Archaeometry, 50(2), 216231. https://doi.org/10.1111/j.1475-4754.2008.00391.x.CrossRefGoogle Scholar
Tite, M. S. & Maniatis, Y. (1975). Scanning electron microscopy of fired calcareous clays. Trans.J.Br.Ceramic.Soc., 74(1), 1922.Google Scholar
Tite, M. S., Freestone, I., Mason, R. et al. (1998). Lead glazes in antiquity – Methods of production and reasons for use. Archaeometry, 40, 241260. https://doi.org/10.1111/j.1475-4754.1998.tb00836.x.CrossRefGoogle Scholar
Tite, M. S., Kilikoglou, V. & Vekinis, G. (2001). Strength, toughness and thermal shock resistance of ancient ceramics and their influence on technological choices. Archaeometry, 43(2), 301324. https://doi.org/10.1111/1475-4754.00019.CrossRefGoogle Scholar
Tite, M., Shortland, A. & Paynter, S. (2002). The beginnings of vitreous materials in the Near East and Egypt. Acc.Chem.Res., 35(8), 585593. https://doi.org/10.1021/ar000204k.CrossRefGoogle ScholarPubMed
Tite, M., Watson, O., Pradell, T. et al. (2015). Revisiting the beginnings of tin-opacified Islamic glazes. JAS, 57, 8091. https://doi.org/10.1016/j.jas.2015.02.005.Google Scholar
Trindade, M. J., Dias, M. I., Coroado, J. & Rocha, F. (2009). Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl.ClaySci., 42, 345355. https://doi.org/10.1016/j.clay.2008.02.008.CrossRefGoogle Scholar
Ul-Hamid, A. (2018). A Beginners’ Guide to Scanning Electron Microscopy. Cham: Springer Nature. https://doi.org/10.1007/978-3-319-98482-7.CrossRefGoogle Scholar
Vandenabeele, P. & Donais, M. K. (2016). Mobile spectroscopic instrumentation in archaeometry research. Appl.Spectrosc., 70(1), 2741. https://doi.org/10.1177/0003702815611063.CrossRefGoogle ScholarPubMed
Vandenabeele, P., Edwards, H. G. & Moens, L. (2007). A decade of Raman spectroscopy in art and archaeology. Chem. Rev., 107, 675686. https://doi.org/10.1021/cr068036i.CrossRefGoogle ScholarPubMed
Vekinis, G. & Kilikoglou, V. (1998). Mechanical performance of quartz-tempered ceramics: Part II, Hertzian strength, wear resistance and applications to ancient ceramics. Archaeometry, 40(2), 281292. https://doi.org/10.1111/j.1475-4754.1998.tb00838.x.CrossRefGoogle Scholar
Velde, B. & Druc, I.C. (1999). Archaeological Ceramic Materials: Origin and Utilization. Heidelberg: Springer.10.1007/978-3-642-59905-7CrossRefGoogle Scholar
Vieillevigne, E., Guibert, P. & Bechtel, F. (2007). Luminescence chronology of the medieval citadel of Termez, Uzbekistan: TL dating of bricks masonries. JAS, 34, 14021416.Google Scholar
Wagner, G. A. (1998). Age Determination of Young Rocks and Artifacts: Physical and Chemical Clocks in Quaternary Geology and Archaeology. Berlin-Heidelberg: Springer – Verlag.10.1007/978-3-662-03676-1CrossRefGoogle Scholar
Walton, M. S. & Tite, M. S. (2010). Production technology of roman lead-glazed pottery and its continuance into late antiquity. Archaeometry, 52, 733759. https://doi.org/10.1111/j.1475-4754.2009.00506.x.CrossRefGoogle Scholar
Watson, I. A. & Aitken, M. J. (1985). Firing temperature analysis using the 110ºC peak of quartz. Nuclear Tracks, 10(4–6), 517520.Google Scholar
Weigand, P. C., Harbottle, G. & Sayre, E. V. (1977). Turquoise sources and source analysis: Mesoamerica and the southwestern U.S.A. In Earle, T. K. & Ericson, J. E., eds., Exchange Systems in Prehistory. New York: Academic, pp. 1534.10.1016/B978-0-12-227650-7.50008-0CrossRefGoogle Scholar
Weyl, W. A. (2016). Coloured Glasses. Sheffield: Society of Glass Technology.Google Scholar
Williams, P. R., Sharratt, N., Banikazemi, C. et al. (2023). Ceramic production in the Tiwanaku sphere: LA-ICP-MS in the Moquegua, Titicaca, and Cochabamba regions. JASRep., 50, 103874. 10.htttps://doi.org/10.1016/j.jasrep.2023.103874.Google Scholar
Wopenka, B., Popelka, R., Pasteris, J. D. & Rotroff, S. (2002). Understanding the mineralogical composition of ancient Greek pottery through Raman microprobe spectroscopy. Appl.Spectrosc., 56, 13201328.10.1366/000370202760355046CrossRefGoogle Scholar
Yuan, M., Hou, J., Gorni, G. et al. (2022). Jun ware glaze colours: An X-ray absorption spectroscopy study. J.Eur.Ceram.Soc., 42(6), 30153022. https://doi.org/10.1016/j.jeurceramsoc.2022.02.016.CrossRefGoogle Scholar
Ziemann, M. A. & Madariaga, J. M. (2020). Applications of Raman spectroscopy in art and archaeology. J.RamanSpectrosc., 52, 814. https://doi.org/10.1002/jrs.5571.Google Scholar
Zienkiewicz, O. C., Taylor, R. L. & Zhu, J. Z. (2005). The Finite Element Method: Its Basis and Fundamentals (6th Ed.). Amsterdam: Elsevier Butterworth-Heinemann. https://doi.org/10.1016/C2009-0-24909-9.Google Scholar
Zimmerman, J. (1971). The radiation induced increase of the 110 ºC TL sensitivity of fired quartz. J.Phys.C:SolidStatePhys., 4(18), 32653276. https://doi.org/10.1088/0022-3719/4/18/032.CrossRefGoogle Scholar

Accessibility standard: WCAG 2.1 AA

The PDF of this Element complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and achieves the intermediate (AA) level of WCAG compliance, covering a wider range of accessibility requirements.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ceramic Analysis
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Ceramic Analysis
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Ceramic Analysis
Available formats
×