Understand multiphase flows using multidisciplinary knowledge in physical principles, modelling theories, and engineering practices. This essential text methodically introduces the important concepts, governing mechanisms, and state-of-the-art theories, using numerous real-world applications, examples, and problems. Covers all major types of multiphase flows, including gas-solid, gas-liquid (sprays or bubbling), liquid-solid, and gas-solid-liquid flows. Introduces the volume-time-averaged transport theorems and associated Lagrangian-trajectory modelling and Eulerian-Eulerian multi-fluid modelling. Explains typical computational techniques, measurement methods and four representative subjects of multiphase flow systems. Suitable as a reference for engineering students, researchers, and practitioners, this text explores and applies fundamental theories to the analysis of system performance using a case-based approach.
'… extremely well-written, balanced, and classroom-tested advanced textbook … Momentum, heat, and mass transfer are discussed in a consistent style throughout the text … good number of homework problems, and references … Highly recommended.'
J. Lambropoulos Source: Choice Connect
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.