Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-qr8hc Total loading time: 0 Render date: 2025-12-01T05:26:45.051Z Has data issue: false hasContentIssue false

14d - Laser Energy: Explanation of Light in a Broad Spectrum of Challenges

from Chapter 14 - High Energy Forms: Employing the Spectrum of Energy as Surgical Adjuvants

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Summary

Laser interstitial thermal therapy (LITT) involves the utilization of laser light energy and its photothermal properties when interacting with tissue for the treatment of various pathologies via the induction of hyperthermia and coagulation. Current neurosurgical applications of LITT include treatment of metastatic in-field recurrence, primary brain tumors, epilepsy, movement disorders, psychiatric disorders, pain syndromes, and spine tumors. Here we explore the basic principles of LITT and its current applications within neurosurgery. We then discuss the potential directions in which LITT may progress as a treatment modality, both as a stand-alone procedure and in conjunction with other adjunct interventions.

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 307 - 332
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Franzini, A, Moosa, S, Servello, D, Small, I, DiMeco, F, Xu, Z, et al. Ablative brain surgery: an overview. Int J Hyperthermia. 2019; 36(2):6480.10.1080/02656736.2019.1616833CrossRefGoogle ScholarPubMed
Rosomoff, HL, Carroll, F. Reaction of neoplasm and brain to laser. Arch Neurol. 1966; 14(2):143–8.10.1001/archneur.1966.00470080027004CrossRefGoogle ScholarPubMed
Tew, JM, Jr., Tobler, WD. The laser: history, biophysics, and neurosurgical applications. Clin Neurosurg. 1983; 31:506–49.Google ScholarPubMed
Jain, KK. Lasers in neurosurgery: a review. Lasers Surg Med. 1983; 2(3):217–30.10.1002/lsm.1900020305CrossRefGoogle ScholarPubMed
Belykh, E, Yagmurlu, K, Martirosyan, NL, Lei, T, Izadyyazdanabadi, M, Malik, KM, et al. Laser application in neurosurgery. Surg Neurol Int. 2017; 8:274.Google ScholarPubMed
Leuthardt, EC, Duan, C, Kim, MJ, Campian, JL, Kim, AH, Miller-Thomas, MM, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One. 2016; 11(2):e0148613.10.1371/journal.pone.0148613CrossRefGoogle ScholarPubMed
Keisari, Y. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation. Front Biosci (Landmark Ed). 2017; 22(2):310–47.10.2741/4487CrossRefGoogle ScholarPubMed
Sutton, CH. Tumor hyperthermia in the treatment of malignant gliomas of the brain. Trans Am Neurol Assoc. 1971; 96:195–9.Google ScholarPubMed
Bown, SG. Phototherapy in tumors. World J Surg. 1983; 7(6):700–9.10.1007/BF01655209CrossRefGoogle ScholarPubMed
Sugiyama, K, Sakai, T, Fujishima, I, Ryu, H, Uemura, K, Yokoyama, T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg. 1990; 54– 55:501–5.Google Scholar
Jolesz, FA, Bleier, AR, Jakab, P, Ruenzel, PW, Huttl, K, Jako, GJ. MR imaging of laser-tissue interactions. Radiology. 1988; 168(1):249–53.10.1148/radiology.168.1.3380968CrossRefGoogle ScholarPubMed
Tracz, RA, Wyman, DR, Little, PB, Towner, RA, Stewart, WA, Schatz, SW, et al. Magnetic resonance imaging of interstitial laser photocoagulation in brain. Lasers Surg Med. 1992; 12(2):165–73.10.1002/lsm.1900120209CrossRefGoogle ScholarPubMed
De Poorter, J, De Wagter, C, De Deene, Y, Thomsen, C, Stahlberg, F, Achten, E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med. 1995; 33(1):7481.10.1002/mrm.1910330111CrossRefGoogle ScholarPubMed
Thomsen, S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol. 1991; 53(6):825–35.10.1111/j.1751-1097.1991.tb09897.xCrossRefGoogle ScholarPubMed
Kahn, T, Bettag, M, Ulrich, F, Schwarzmaier, HJ, Schober, R, Furst, G, et al. MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr. 1994; 18(4):519–32.10.1097/00004728-199407000-00002CrossRefGoogle ScholarPubMed
Schwabe, B, Kahn, T, Harth, T, Ulrich, F, Schwarzmaier, HJ. Laser-induced thermal lesions in the human brain: short- and long-term appearance on MRI. J Comput Assist Tomogr. 1997; 21(5):818–25.10.1097/00004728-199709000-00031CrossRefGoogle Scholar
Missios, S, Bekelis, K, Barnett, GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015; 38(3):E13.10.3171/2014.12.FOCUS14762CrossRefGoogle ScholarPubMed
Tyc, R. Magnetic resonance-guided interstitial thermal therapy: historical perspectives and overview of the principles of LITT. In: Chiang, V, editor. Laser Interstitial Thermal Therapy in Neurosurgery: Springer International Publishing; 2020. p. 7.Google Scholar
Awad, AJ, Nguyen, HS, Arocho-Quinones, E, Doan, N, Mueller, W, Lew, SM. Stereotactic laser ablation of amygdala and hippocampus using a Leksell stereotactic frame. Neurosurg Focus. 2018; 44(VideoSuppl2):V1.10.3171/2018.4.FocusVid.17712CrossRefGoogle ScholarPubMed
Patel, NV, Mian, M, Stafford, RJ, Nahed, BV, Willie, JT, Gross, RE, et al. Laser interstitial thermal therapy technology, physics of magnetic resonance imaging thermometry, and technical considerations for proper catheter placement during magnetic resonance imaging-guided laser interstitial thermal therapy. Neurosurgery. 2016; 79 Suppl 1:S8–16.10.1227/NEU.0000000000001440CrossRefGoogle ScholarPubMed
D’Haese, PF, Pallavaram, S, Konrad, PE, Neimat, J, Fitzpatrick, JM, Dawant, BM. Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact Funct Neurosurg. 2010; 88(2):81–7.10.1159/000271823CrossRefGoogle ScholarPubMed
Patel, NV. Technical considerations for LITT: getting through the procedure. In: Chiang, V, editor. Laser Interstitial Thermal Therapy in Neurosurgery: Springer International Publishing; 2020. pp. 20–1.Google Scholar
Tovar-Spinoza, Z, Choi, H. MRI-guided laser interstitial thermal therapy for the treatment of low-grade gliomas in children: a case-series review, description of the current technologies and perspectives. Childs Nerv Syst. 2016; 32(10):1947–56.10.1007/s00381-016-3193-0CrossRefGoogle Scholar
Hooten, KG, Werner, K, Mikati, MA, Muh, CR. MRI-guided laser interstitial thermal therapy in an infant with tuberous sclerosis: technical case report. J Neurosurg Pediatr. 2018; 23(1):92–7.Google Scholar
Miller, BA, Salehi, A, Limbrick, DD, Jr., Smyth, MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr. 2017; 20(4):364–70.10.3171/2017.5.PEDS1782CrossRefGoogle ScholarPubMed
Sneed, PK, Mendez, J, Vemer-van den Hoek, JG, Seymour, ZA, Ma, L, Molinaro, AM, et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015; 123(2):373–86.10.3171/2014.10.JNS141610CrossRefGoogle ScholarPubMed
Ahluwalia, M, Barnett, GH, Deng, D, Tatter, SB, Laxton, AW, Mohammadi, AM, et al. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J Neurosurg. 2018; 130(3):804–11.Google ScholarPubMed
Alattar, AA, Bartek, J, Jr., Chiang, VL, Mohammadi, AM, Barnett, GH, Sloan, A, et al. Stereotactic laser ablation as treatment of brain metastases recurring after stereotactic radiosurgery: a systematic literature review. World Neurosurg. 2019; 128:134–42.10.1016/j.wneu.2019.04.200CrossRefGoogle ScholarPubMed
Hong, CS, Deng, D, Vera, A, Chiang, VL. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neurooncol. 2019; 142(2):309–17.10.1007/s11060-019-03097-zCrossRefGoogle ScholarPubMed
Sujijantarat, N, Hong, CS, Owusu, KA, Elsamadicy, AA, Antonios, JP, Koo, AB, et al. Laser interstitial thermal therapy (LITT) vs. bevacizumab for radiation necrosis in previously irradiated brain metastases. J Neurooncol. 2020; 148(3):641–9.10.1007/s11060-020-03570-0CrossRefGoogle ScholarPubMed
Grabowski, MM, Srinivasan, ES, Vaios, EJ, Sankey, EW, Otvos, B, Krivosheya, D, et al. Combination laser interstitial thermal therapy plus stereotactic radiotherapy increases time to progression for biopsy-proven recurrent brain metastases. Neurooncol Adv. 2022; 4(1):vdac086.Google ScholarPubMed
Chan, M, Tatter, S, Chiang, V, Fecci, P, Strowd, R, Prabhu, S, et al. Efficacy of laser interstitial thermal therapy for biopsy-proven radiation necrosis in radiographically recurrent brain metastases. Neurooncol Adv. 2023; 5(1):vdad031.Google ScholarPubMed
Ostrom, QT, Cioffi, G, Waite, K, Kruchko, C, Barnholtz-Sloan, JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021; 23(12 Suppl 2):iii1105.10.1093/neuonc/noab200CrossRefGoogle ScholarPubMed
Stupp, R, Hegi, ME, Mason, WP, van den Bent, MJ, Taphoorn, MJ, Janzer, RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10(5):459–66.10.1016/S1470-2045(09)70025-7CrossRefGoogle Scholar
Stupp, R, Mason, WP, van den Bent, MJ, Weller, M, Fisher, B, Taphoorn, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352(10):987–96.10.1056/NEJMoa043330CrossRefGoogle ScholarPubMed
Lacroix, M, Abi-Said, D, Fourney, DR, Gokaslan, ZL, Shi, W, DeMonte, F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001; 95(2):190–8.10.3171/jns.2001.95.2.0190CrossRefGoogle ScholarPubMed
Sanai, N, Polley, MY, McDermott, MW, Parsa, AT, Berger, MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011; 115(1):38.10.3171/2011.2.JNS10998CrossRefGoogle ScholarPubMed
Wilson, CB. Glioblastoma: the past, the present, and the future. Clin Neurosurg. 1992; 38:3248.Google ScholarPubMed
Mohammadi, AM, Sharma, M, Beaumont, TL, Juarez, KO, Kemeny, H, Dechant, C, et al. Upfront magnetic resonance imaging-guided stereotactic laser-ablation in newly diagnosed glioblastoma: a multicenter review of survival outcomes compared to a matched cohort of biopsy-only patients. Neurosurgery. 2019; 85(6):762–72.10.1093/neuros/nyy449CrossRefGoogle ScholarPubMed
Ivan, ME, Mohammadi, AM, De Deugd, N, Reyes, J, Rodriguez, G, Shah, A, et al. Laser ablation of newly diagnosed malignant gliomas: a meta-analysis. Neurosurgery. 2016; 79 Suppl 1:S17–23.10.1227/NEU.0000000000001446CrossRefGoogle ScholarPubMed
Mohammadi, AM, Hawasli, AH, Rodriguez, A, Schroeder, JL, Laxton, AW, Elson, P, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014; 3(4):971–9.10.1002/cam4.266CrossRefGoogle ScholarPubMed
Beaumont, TL, Mohammadi, AM, Kim, AH, Barnett, GH, Leuthardt, EC. Magnetic resonance imaging-guided laser interstitial thermal therapy for glioblastoma of the corpus callosum. Neurosurgery. 2018; 83(3):556–65.10.1093/neuros/nyx518CrossRefGoogle ScholarPubMed
Chaichana, KL, Jusue-Torres, I, Lemos, AM, Gokaslan, A, Cabrera-Aldana, EE, Ashary, A, et al. The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors? J Neurooncol. 2014; 120(3):625–34.10.1007/s11060-014-1597-9CrossRefGoogle ScholarPubMed
Sloan, AE, Ahluwalia, MS, Valerio-Pascua, J, Manjila, S, Torchia, MG, Jones, SE, et al. Results of the NeuroBlate System first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013; 118(6):1202–19.10.3171/2013.1.JNS1291CrossRefGoogle ScholarPubMed
Lee, I, Kalkanis, S, Hadjipanayis, CG. Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas. Neurosurgery. 2016; 79 Suppl 1:S24–34.10.1227/NEU.0000000000001443CrossRefGoogle ScholarPubMed
O’Halloran, PJ, Henry, J, Amoo, M, Kalyvas, A, Mohan, N, Zadeh, G, et al. LITTing up gliomas – is the future bright? World Neurosurg X. 2023; 17:100136.10.1016/j.wnsx.2022.100136CrossRefGoogle Scholar
de Groot JF, , Kim, AH, Prabhu, S, Rao, G, Laxton, AW, Fecci, PE, et al. Efficacy of laser interstitial thermal therapy (LITT) for newly diagnosed and recurrent IDH wild-type glioblastoma. Neurooncol Adv. 2022; 4(1):vdac040.Google ScholarPubMed
Wright, J, Chugh, J, Wright, CH, Alonso, F, Hdeib, A, Gittleman, H, et al. Laser interstitial thermal therapy followed by minimal-access transsulcal resection for the treatment of large and difficult to access brain tumors. Neurosurg Focus. 2016; 41(4):E14.10.3171/2016.8.FOCUS16233CrossRefGoogle ScholarPubMed
Man, J, Shoemake, JD, Ma, T, Rizzo, AE, Godley, AR, Wu, Q, et al. Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res. 2015; 75(8):1760–9.10.1158/0008-5472.CAN-14-3621CrossRefGoogle ScholarPubMed
Sadler, RM. The syndrome of mesial temporal lobe epilepsy with hippocampal sclerosis: clinical features and differential diagnosis. Adv Neurol. 2006; 97:2737.Google ScholarPubMed
Stereotactic Laser Ablation for Temporal Lobe Epilepsy [Internet]. 2016. Available from: classic.clinicaltrials.gov/ct2/show/NCT02844465.Google Scholar
Grobelny, BT. LITT in the treatment of adult epilepsy. In: Chiang, V, editor. Laser Interstitial Thermal Therapy in Neurosurgery: Springer International Publishing; 2020. p. 88.Google Scholar
Wu, C, Boorman, DW, Gorniak, RJ, Farrell, CJ, Evans, JJ, Sharan, AD. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning. Neurosurgery. 2015; 11 Suppl 2:345–56; discussion 56–7.Google Scholar
Jermakowicz, WJ, Kanner, AM, Sur, S, Bermudez, C, D’Haese, PF, Kolcun, JPG, et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017; 58(5):801–10.10.1111/epi.13715CrossRefGoogle ScholarPubMed
Drane, DL, Willie, JT, Pedersen, NP, Qiu, D, Voets, NL, Millis, SR, et al. Superior verbal memory outcome after stereotactic laser amygdalohippocampotomy. Front Neurol. 2021; 12:779495.10.3389/fneur.2021.779495CrossRefGoogle ScholarPubMed
Lewis, EC, Weil, AG, Duchowny, M, Bhatia, S, Ragheb, J, Miller, I. MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia. 2015; 56(10):1590–8.10.1111/epi.13106CrossRefGoogle ScholarPubMed
Choi, SA, Kim, SY, Kim, H, Kim, WJ, Kim, H, Hwang, H, et al. Surgical outcome and predictive factors of epilepsy surgery in pediatric isolated focal cortical dysplasia. Epilepsy Res. 2018; 139:54–9.10.1016/j.eplepsyres.2017.11.012CrossRefGoogle ScholarPubMed
Willie, JT, Malcolm, JG, Stern, MA, Lowder, LO, Neill, SG, Cabaniss, BT, et al. Safety and effectiveness of stereotactic laser ablation for epileptogenic cerebral cavernous malformations. Epilepsia. 2019; 60(2):220–32.10.1111/epi.14634CrossRefGoogle ScholarPubMed
Thompson, SA, Kalamangalam, GP, Tandon, N. Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure. 2016; 41:211–16.10.1016/j.seizure.2016.06.019CrossRefGoogle ScholarPubMed
Benabid, AL, Chabardes, S, Torres, N, Piallat, B, Krack, P, Fraix, V, et al. Functional neurosurgery for movement disorders: a historical perspective. Prog Brain Res. 2009; 175:379–91.10.1016/S0079-6123(09)17525-8CrossRefGoogle ScholarPubMed
Weaver, FM, Follett, KA, Stern, M, Luo, P, Harris, CL, Hur, K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012; 79(1):5565.10.1212/WNL.0b013e31825dcdc1CrossRefGoogle ScholarPubMed
McLaughlin, NCR, Lauro, PM, Patrick, MT, Pucci, FG, Barrios-Anderson, A, Greenberg, BD, et al. Magnetic resonance imaging-guided laser thermal ventral capsulotomy for intractable obsessive-compulsive disorder. Neurosurgery. 2021; 88(6):1128–35.10.1093/neuros/nyab050CrossRefGoogle ScholarPubMed
Tatsui, CE, Stafford, RJ, Li, J, Sellin, JN, Amini, B, Rao, G, et al. Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg Spine. 2015; 23(4):400–11.10.3171/2015.2.SPINE141185CrossRefGoogle Scholar
Tatsui, CE, Belsuzarri, TA, Oro, M, Rhines, LD, Li, J, Ghia, AJ, et al. Percutaneous surgery for treatment of epidural spinal cord compression and spinal instability: technical note. Neurosurg Focus. 2016; 41(4):E2.10.3171/2016.8.FOCUS16175CrossRefGoogle ScholarPubMed
Bastos, DCA, Vega, RA, Traylor, JI, Ghia, AJ, Li, J, Oro, M, et al. Spinal laser interstitial thermal therapy: single-center experience and outcomes in the first 120 cases. J Neurosurg Spine. 2020; 34(3):354–63.Google ScholarPubMed
Miretti, M, González Graglia, MA, Suárez, AI, Prucca, CG. Photodynamic therapy for glioblastoma: a light at the end of the tunnel. J Photochem Photobiol. 2023; 13:100161.10.1016/j.jpap.2023.100161CrossRefGoogle Scholar
Bettag, M, Ulrich, F, Schober, R, Furst, G, Langen, KJ, Sabel, M, et al. Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien). 1991; 52:81–3.10.1007/978-3-7091-9160-6_23CrossRefGoogle ScholarPubMed
Ascher, PW, Justich, E, Schrottner, O. Interstitial thermotherapy of central brain tumors with the Nd:YAG laser under real-time monitoring by MRI. J Clin Laser Med Surg. 1991; 9(1):7983.10.1089/clm.1991.9.79CrossRefGoogle Scholar
Roux, FX, Merienne, L, Fallet-Bianco, C, Beuvon, F, Devaux, B, Leriche, B, et al. [Stereotaxic laser interstitial thermotherapy. A new alternative in the therapeutic management of some brain tumors]. Neurochirurgie. 1992; 38(4):238–44.Google ScholarPubMed
Sakai, T, Fujishima, I, Sugiyama, K, Ryu, H, Uemura, K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg. 1992; 10(1):3740.10.1089/clm.1992.10.37CrossRefGoogle ScholarPubMed
Reimer, P, Bremer, C, Horch, C, Morgenroth, C, Allkemper, T, Schuierer, G. MR-monitored LITT as a palliative concept in patients with high grade gliomas: preliminary clinical experience. J Magn Reson Imaging. 1998; 8(1):240–4.10.1002/jmri.1880080140CrossRefGoogle ScholarPubMed
Leonardi, MA, Lumenta, CB, Gumprecht, HK, von Einsiedel GH, , Wilhelm, T. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR-unit. Minim Invasive Neurosurg. 2001; 44(1):3742.10.1055/s-2001-13581CrossRefGoogle Scholar
Schwarzmaier, HJ, Eickmeyer, F, von Tempelhoff, W, Fiedler, VU, Niehoff, H, Ulrich, SD, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006; 59(2):208–15.10.1016/j.ejrad.2006.05.010CrossRefGoogle ScholarPubMed
Carpentier, A, McNichols, RJ, Stafford, RJ, Guichard, JP, Reizine, D, Delaloge, S, et al. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011; 43(10):943–50.10.1002/lsm.21138CrossRefGoogle ScholarPubMed
Carpentier, A, McNichols, RJ, Stafford, RJ, Itzcovitz, J, Guichard, JP, Reizine, D, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008; 63(1 Suppl 1):ONS21-8; discussion ONS8-9.Google ScholarPubMed
Jethwa, PR, Lee, JH, Assina, R, Keller, IA, Danish, SF. Treatment of a supratentorial primitive neuroectodermal tumor using magnetic resonance-guided laser-induced thermal therapy. J Neurosurg Pediatr. 2011; 8(5):468–75.10.3171/2011.8.PEDS11148CrossRefGoogle ScholarPubMed
Carpentier, A, Chauvet, D, Reina, V, Beccaria, K, Leclerq, D, McNichols, RJ, et al. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med. 2012; 44(5):361–8.10.1002/lsm.22025CrossRefGoogle ScholarPubMed
Curry, DJ, Gowda, A, McNichols, RJ, Wilfong, AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav. 2012; 24(4):408–14.10.1016/j.yebeh.2012.04.135CrossRefGoogle ScholarPubMed
Rahmathulla, G, Recinos, PF, Valerio, JE, Chao, S, Barnett, GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg. 2012; 90(3):192200.10.1159/000338251CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×