Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-ms8jb Total loading time: 0 Render date: 2025-12-01T05:26:51.517Z Has data issue: false hasContentIssue false

Section II - Ideas and Concepts in Modern Neurosurgical Innovation

Published online by Cambridge University Press:  aN Invalid Date NaN

Benjamin Hartley
Affiliation:
Weill Cornell Medical Center
Philip E. Stieg
Affiliation:
Weill Cornell Medical College
Rohan Ramakrishna
Affiliation:
Weill Cornell Medical College
Michael L. J. Apuzzo
Affiliation:
Adjunct of Yale Medical School and Weill Cornell Medical College
Get access

Information

Type
Chapter
Information
Neurosurgery
Beyond the Cutting Edge
, pp. 13 - 96
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Zada, G, Liu, C, Apuzzo, ML. “Through the looking glass”: optical physics, issues, and the evolution of neuroendoscopy. World Neurosurgery. 2013;79(2 Suppl):S3–13.10.1016/j.wneu.2013.02.001CrossRefGoogle Scholar
Doglietto, F, Prevedello, DM, Jane, JA, Jr., Han, J, Laws, ER, Jr. Brief history of endoscopic transsphenoidal surgery – from Philipp Bozzini to the First World Congress of Endoscopic Skull Base Surgery. Neurosurgical Focus. 2005;19(6):E3.CrossRefGoogle Scholar
Brown, RA. A computerized tomography-computer graphics approach to stereotaxic localization. Journal of Neurosurgery. 1979;50(6):715–20.10.3171/jns.1979.50.6.0715CrossRefGoogle ScholarPubMed
Watanabe, E, Mayanagi, Y, Kosugi, Y, Manaka, S, Takakura, K. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery. 1991;28(6):792–9; discussion 9–800.10.1227/00006123-199106000-00002CrossRefGoogle ScholarPubMed
Alexander, E, 3rd, Kooy, HM, van Herk, M, Schwartz, M, Barnes, PD, Tarbell, N, et al. Magnetic resonance image-directed stereotactic neurosurgery: Use of image fusion with computerized tomography to enhance spatial accuracy. Journal of Neurosurgery. 1995;83(2):271–6.10.3171/jns.1995.83.2.0271CrossRefGoogle ScholarPubMed
Roberts, DW, Strohbehn, JW, Hatch, JF, Murray, W, Kettenberger, H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. Journal of Neurosurgery. 1986;65(4):545–9.10.3171/jns.1986.65.4.0545CrossRefGoogle ScholarPubMed
Hoh, DJ, Liu, CY, Pagnini, PG, Yu, C, Wang, MY, Apuzzo, ML. Chained lightning, part I: Exploitation of energy and radiobiological principles for therapeutic purposes. Neurosurgery. 2007;61(1):1427; discussion –8.10.1227/01.neu.0000279720.83026.49CrossRefGoogle ScholarPubMed
Hoh, DJ, Liu, CY, Chen, JC, Pagnini, PG, Yu, C, Wang, MY, et al. Chained lightning, part II: Neurosurgical principles, radiosurgical technology, and the manipulation of energy beam delivery. Neurosurgery. 2007;61(3):433–46; discussion 46.10.1227/01.NEU.0000290888.54578.F5CrossRefGoogle ScholarPubMed
Barnett, GH, Linskey, ME, Adler, JR, Cozzens, JW, Friedman, WA, Heilbrun, MP, et al. Stereotactic radiosurgery – an organized neurosurgery-sanctioned definition. Journal of Neurosurgery. 2007;106(1):15.10.3171/jns.2007.106.1.1CrossRefGoogle ScholarPubMed
Pelz, DM, Lownie, SP, Mayich, MS, Pandey, SK, Sharma, M. Interventional neuroradiology: a review. Canadian Journal of Neurological Science. 2021;48(2):172–88.Google ScholarPubMed
Yaeger, K, Mocco, J. Future directions of endovascular neurosurgery. Neurosurgery Clinics North America. 2022;33(2):233–9.10.1016/j.nec.2021.11.007CrossRefGoogle ScholarPubMed
Al Saiegh, F, Munoz, A, Velagapudi, L, Theofanis, T, Suryadevara, N, Patel, P, et al. Patient and procedure selection for mechanical thrombectomy: Toward personalized medicine and the role of artificial intelligence. Journal of Neuroimaging. 2022;32(5):798807.10.1111/jon.13003CrossRefGoogle ScholarPubMed
Martinez-Gutierrez, JC, Leslie-Mazwi, T, Chandra, RV, Ong, KL, Nogueira, RG, Goyal, M, et al. Number needed to treat: A primer for neurointerventionalists. Interventional Neuroradiology. 2019;25(6):613–8.10.1177/1591019919858733CrossRefGoogle Scholar
Lindgren, A, Vergouwen, MD, van der Schaaf, I, Algra, A, Wermer, M, Clarke, MJ, et al. Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Database Systematic Reviews. 2018;8(8):CD003085.Google ScholarPubMed
Fiorella, D, Molyneux, A, Coon, A, Szikora, I, Saatci, I, Baltacioglu, F, et al. Safety and effectiveness of the Woven EndoBridge (WEB) system for the treatment of wide necked bifurcation aneurysms: final 5 year results of the pivotal WEB Intra-saccular Therapy study (WEB-IT). Journal of NeuroInterventional Surgery. 2023:jnis-2023–020611.10.1136/jnis-2023-020611CrossRefGoogle Scholar
Medvid, R, Ruiz, A, Komotar, RJ, Jagid, JR, Ivan, ME, Quencer, RM, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: A radiologic and neurosurgical overview. AJNR American Journal of Neuroradiology. 2015;36(11):19982006.10.3174/ajnr.A4362CrossRefGoogle ScholarPubMed
McAfee, PC, Phillips, FM, Andersson, G, Buvenenadran, A, Kim, CW, Lauryssen, C, et al. Minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35(26 Suppl):S271–3.10.1097/BRS.0b013e31820250a2CrossRefGoogle ScholarPubMed
Hsieh, PC, Koski, TR, Sciubba, DM, Moller, DJ, O’Shaughnessy, BA, Li, KW, et al. Maximizing the potential of minimally invasive spine surgery in complex spinal disorders. Neurosurgical Focus. 2008;25(2):E19.10.3171/FOC/2008/25/8/E19CrossRefGoogle ScholarPubMed
Foley, KT, Holly, LT, Schwender, JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;28(15 Suppl):S26–35.10.1097/01.BRS.0000076895.52418.5ECrossRefGoogle ScholarPubMed
Kwon, H, Park, JY. The role and future of endoscopic spine surgery: A narrative review. Neurospine. 2023;20(1):4355.10.14245/ns.2346236.118CrossRefGoogle ScholarPubMed
Lylyk, P, Lylyk, I, Bleise, C, Scrivano, E, Lylyk, PN, Beneduce, B, et al. First-in-human endovascular treatment of hydrocephalus with a miniature biomimetic transdural shunt. Journal of NeuroInterventional Surgery. 2022;14(5):495–9.10.1136/neurintsurg-2021-018136CrossRefGoogle ScholarPubMed
Mitchell, P, Lee, SCM, Yoo, PE, Morokoff, A, Sharma, RP, Williams, DL, et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: The Stentrode With Thought-Controlled Digital Switch (SWITCH) Study. JAMA Neurology. 2023;80(3):270–8.10.1001/jamaneurol.2022.4847CrossRefGoogle Scholar
Abbasi, J, Suran, M. From thought to text: How an endovascular brain-computer interface could help patients with severe paralysis communicate. JAMA. 2023;329(5):360–2.10.1001/jama.2022.24343CrossRefGoogle ScholarPubMed
Thielen, B, Xu, H, Fujii, T, Rangwala, SD, Jiang, W, Lin, M, et al. Making a case for endovascular approaches for neural recording and stimulation. Journal of Neural Engineering. 2023;20(1):011001.10.1088/1741-2552/acb086CrossRefGoogle ScholarPubMed
Lev-Tov, L, Barbosa, DAN, Ghanouni, P, Halpern, CH, Buch, VP. Focused ultrasound for functional neurosurgery. Journal of Neuro-oncology. 2022;156(1):1722.10.1007/s11060-021-03818-3CrossRefGoogle ScholarPubMed
Quadri, SA, Waqas, M, Khan, I, Khan, MA, Suriya, SS, Farooqui, M, et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurgical Focus. 2018;44(2):E16.10.3171/2017.11.FOCUS17610CrossRefGoogle ScholarPubMed
Stupp, R, Mason, WP, van den Bent, MJ, Weller, M, Fisher, B, Taphoorn, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine. 2005;352(10):987–96.10.1056/NEJMoa043330CrossRefGoogle ScholarPubMed
Liau, LM, Ashkan, K, Brem, S, Campian, JL, Trusheim, JE, Iwamoto, FM, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncology. 2023;9(1):112–21.10.1001/jamaoncol.2022.5370CrossRefGoogle Scholar
Wen, PY, Stein, A, van den Bent, M, De Greve, J, Wick, A, de Vos, F, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. The Lancet Oncology. 2022;23(1):5364.10.1016/S1470-2045(21)00578-7CrossRefGoogle ScholarPubMed

References

Thompson, L., Fetal transplants show promise. Science 257, 868, 870 (1992).10.1126/science.1502548CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Conference Committee on Fetal Research and Applications, Fetal Research and Applications: A Conference Summary (National Academies Press (US), Washington (DC), 1994; http://www.ncbi.nlm.nih.gov/books/NBK232011/).Google Scholar
Liu, C. Y., Apuzzo, M. L. J., Tirrell, D. A., Engineering of the extracellular matrix: working toward neural stem cell programming and neurorestoration – concept and progress report. Neurosurgery 52, 1154 (2003).Google ScholarPubMed
The Nobel Prize in Physiology or Medicine 2012, The Nobel Prize. https://www.nobelprize.org/prizes/medicine/2012/press-release/.Google Scholar
Wadman, M., Stem cells ready for prime time. Nature 457, 516 (2009).10.1038/457516aCrossRefGoogle ScholarPubMed
McKenna, S. L., Ehsanian, R., Liu, C. Y., Steinberg, G. K., Jones, L., Lebkowski, J. S., Wirth, E., Fessler, R. G., Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J Neurosurg Spine 37, 321–30 (2022).10.3171/2021.12.SPINE21622CrossRefGoogle ScholarPubMed
Fessler, R. G., Liu, C. Y., McKenna, S., Fessler, R. D., Lebkowski, J. S., Priest, C. A., Wirth, E. D., Safety of direct injection of oligodendrocyte progenitor cells into the spinal cord of uninjured Göttingen minipigs. J Neurosurg Spine 35, 389–97 (2021).10.3171/2020.12.SPINE201853CrossRefGoogle ScholarPubMed
Fessler, R. G., Ehsanian, R., Liu, C. Y., Steinberg, G. K., Jones, L., Lebkowski, J. S., Wirth, E. D., McKenna, S. L., A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J Neurosurg Spine 37, 812–20 (2022).10.3171/2022.5.SPINE22167CrossRefGoogle ScholarPubMed
Bourzac, K., Neuroscience: new nerves for old. Nature 540, S52–4 (2016).10.1038/540S52aCrossRefGoogle ScholarPubMed
Regalado, A., After 25 years of hype, embryonic stem cells are still waiting for their moment, MIT Technology Review (2023). https://www.technologyreview.com/2023/08/09/1077580/embryonic-stem-cells-25-years-treatments/.Google Scholar
Maynard, G., Kannan, R., Liu, J., Wang, W., Lam, T. K. T., Wang, X., Adamson, C., Hackett, C., Schwab, J. M., Liu, C., Leslie, D. P., Chen, D., Marino, R., Zafonte, R., Flanders, A., Block, G., Smith, E., Strittmatter, S. M., Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol 22, 672–84 (2023).10.1016/S1474-4422(23)00215-6CrossRefGoogle Scholar
Hsiao, M.-C., Yu, P.-N., Song, D., Liu, C. Y., Heck, C. N., Millett, D., Berger, T. W., An in vitro seizure model from human hippocampal slices using multi-electrode arrays. J Neurosci Methods 244, 154–63 (2015).10.1016/j.jneumeth.2014.09.010CrossRefGoogle Scholar
Ammothumkandy, A., Ravina, K., Wolseley, V., Tartt, A. N., Yu, P.-N., Corona, L., Zhang, N., Nune, G., Kalayjian, L., Mann, J. J., Rosoklija, G. B., Arango, V., Dwork, A. J., Lee, B., a. D. Smith, J., Song, D., Berger, T. W., Heck, C., Chow, R. H., Boldrini, M., Liu, C. Y., Russin, J. J., Bonaguidi, M. A., Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci 25, 493503 (2022).10.1038/s41593-022-01044-2CrossRefGoogle ScholarPubMed
Hurley, D., Immature astroglia in the hippocampus linked to mesial temporal lobe epilepsy. Neurology Today 22, 12 (2022).10.1097/01.NT.0000833140.99511.f6CrossRefGoogle Scholar
Ammothumkandy, A., Corona, L., Ravina, K., Wolseley, V., Nelson, J., Atai, N., Abedi, A., Jimenez, N., Armacost, M., D’Orazio, L. M., Zuverza-Chavarria, V., Cayce, A., McCleary, C., Nune, G., Kalayjian, L., Lee, D., Lee, B., Heck, C., Chow, R. H., Russin, J. J., Liu, C. Y., Smith, J. A. D., Bonaguidi, M. A., Human adult neurogenesis loss underlies cognitive decline during epilepsy progression. bioRxiv [Preprint] (2023). https://doi.org/10.1101/2022.09.12.507339.CrossRefGoogle Scholar
Bershteyn, M., Bröer, S., Parekh, M., Maury, Y., Havlicek, S., Kriks, S., Fuentealba, L., Lee, S., Zhou, R., Subramanyam, G., Sezan, M., Sevilla, E. S., Blankenberger, W., Spatazza, J., Zhou, L., Nethercott, H., Traver, D., Hampel, P., Kim, H., Watson, M., Salter, N., Nesterova, A., Au, W., Kriegstein, A., Alvarez-Buylla, A., Rubenstein, J., Banik, G., Bulfone, A., Priest, C., Nicholas, C. R., Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell 30, 1331–50.e11 (2023).10.1016/j.stem.2023.08.013CrossRefGoogle ScholarPubMed
Newswire, Globe, Neurona Therapeutics Presents Positive Clinical Update from NRTX-1001 Cell Therapy Trial in Adults with Drug-resistant Focal Epilepsy at American Academy of Neurology (AAN) 2024 Annual Meeting, BioSpace (2024). https://www.biospace.com/article/neurona-therapeutics-presents-positive-clinical-update-from-nrtx-1001-cell-therapy-trial-in-adults-with-drug-resistant-focal-epilepsy-at-american-academy-of-neurology-aan-2024-annual-meeting/.Google Scholar
Fairhall, A., Liu, C., Short Course: Neural Prosthetics and Brain Machine Interfaces (2019). https://www.sfn.org/-/media/SfN/Documents/NEW-SfN/Careers/2019-Short-Courses/20190911_2019_SC1_Agenda_Final.pdf.Google Scholar
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., Donoghue, J. P., Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–71 (2006).10.1038/nature04970CrossRefGoogle ScholarPubMed
Katyal, K. D., Johannes, M. S., Kellis, S., Aflalo, T., Klaes, C., McGee, T. G., Para, M. P., Shi, Y., Lee, B., Pejsa, K., Liu, C., Wester, B. A., Tenore, F., Beaty, J. D., Ravitz, A. D., Andersen, R. A., McLoughlin, M. P., A collaborative BCI approach to autonomous control of a prosthetic limb system, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2014), https://ieeexplore.ieee.org/document/6974124), pp. 1479–82.Google Scholar
Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J. C., Velliste, M., Boninger, M. L., Schwartz, A. B., High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–64 (2013).10.1016/S0140-6736(12)61816-9CrossRefGoogle Scholar
Klaes, C., Kellis, S., Aflalo, T., Lee, B., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C., Andersen, R. A., Hand shape representations in the human posterior parietal cortex. J. Neurosci. 35, 15466–76 (2015).10.1523/JNEUROSCI.2747-15.2015CrossRefGoogle ScholarPubMed
Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg, D. A., Nielson, D. M., Sharma, G., Sederberg, P. B., Glenn, B. C., Mysiw, W. J., Morgan, A. G., Deogaonkar, M., Rezai, A. R., Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–50 (2016).10.1038/nature17435CrossRefGoogle Scholar
Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., Kirsch, R. F., Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet 389, 1821–30 (2017).10.1016/S0140-6736(17)30601-3CrossRefGoogle Scholar
Musk, E., Neuralink, , An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 21, e16194 (2019).10.2196/16194CrossRefGoogle ScholarPubMed
Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., Gaunt, R. A., Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 8, 361ra141 (2016).10.1126/scitranslmed.aaf8083CrossRefGoogle ScholarPubMed
Armenta Salas, M., Bashford, L., Kellis, S., Jafari, M., Jo, H., Kramer, D., Shanfield, K., Pejsa, K., Lee, B., Liu, C. Y., Andersen, R. A., Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Elife 7, e32904 (2018).10.7554/eLife.32904CrossRefGoogle ScholarPubMed
Bashford, L., Rosenthal, I., Kellis, S., Pejsa, K., Kramer, D., Lee, B., Liu, C., Andersen, R. A., The neurophysiological representation of imagined somatosensory percepts in human cortex. J Neurosci 41, 2177–85 (2021).10.1523/JNEUROSCI.2460-20.2021CrossRefGoogle ScholarPubMed
Lee, B., Kramer, D., Armenta Salas, M., Kellis, S., Brown, D., Dobreva, T., Klaes, C., Heck, C., Liu, C., Andersen, R. A., Engineering artificial somatosensation through cortical stimulation in humans. Front Syst Neurosci 12, 24 (2018).10.3389/fnsys.2018.00024CrossRefGoogle ScholarPubMed
McCrimmon, C. M., Wang, P. T., Heydari, P., Nguyen, A., Shaw, S. J., Gong, H., Chui, L. A., Liu, C. Y., Nenadic, Z., Do, A. H., Electrocorticographic encoding of human gait in the leg primary motor cortex. Cereb Cortex 28, 2752–62 (2018).10.1093/cercor/bhx155CrossRefGoogle ScholarPubMed
Pu, H., Lim, J., Kellis, S., Liu, C. Y., Andersen, R. A., Do, A. H., Heydari, P., Nenadic, Z., Optimal artifact suppression in simultaneous electrocorticography stimulation and recording for bi-directional brain-computer interface applications. J Neural Eng 17, 026038 (2020).10.1088/1741-2552/ab82acCrossRefGoogle ScholarPubMed
Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., Ferreira, C., Willhite, A., Rejc, E., Grossman, R. G., Edgerton, V. R., Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–47 (2011).10.1016/S0140-6736(11)60547-3CrossRefGoogle ScholarPubMed
Wagner, F. B., Mignardot, J.-B., Le Goff-Mignardot, C. G., Demesmaeker, R., Komi, S., Capogrosso, M., Rowald, A., Seáñez, I., Caban, M., Pirondini, E., Vat, M., McCracken, L. A., Heimgartner, R., Fodor, I., Watrin, A., Seguin, P., Paoles, E., Van Den Keybus, K., Eberle, G., Schurch, B., Pralong, E., Becce, F., Prior, J., Buse, N., Buschman, R., Neufeld, E., Kuster, N., Carda, S., von Zitzewitz, J., Delattre, V., Denison, T., Lambert, H., Minassian, K., Bloch, J., Courtine, G., Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 6571 (2018).10.1038/s41586-018-0649-2CrossRefGoogle ScholarPubMed
Lorach, H., Galvez, A., Spagnolo, V., Martel, F., Karakas, S., Intering, N., Vat, M., Faivre, O., Harte, C., Komi, S., Ravier, J., Collin, T., Coquoz, L., Sakr, I., Baaklini, E., Hernandez-Charpak, S. D., Dumont, G., Buschman, R., Buse, N., Denison, T., van Nes, I., Asboth, L., Watrin, A., Struber, L., Sauter-Starace, F., Langar, L., Auboiroux, V., Carda, S., Chabardes, S., Aksenova, T., Demesmaeker, R., Charvet, G., Bloch, J., Courtine, G., Walking naturally after spinal cord injury using a brain-spine interface. Nature 618, 126–33 (2023).10.1038/s41586-023-06094-5CrossRefGoogle ScholarPubMed
Anumanchipalli, G. K., Chartier, J., Chang, E. F., Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–8 (2019).10.1038/s41586-019-1119-1CrossRefGoogle ScholarPubMed
Moses, D. A., Metzger, S. L., Liu, J. R., Anumanchipalli, G. K., Makin, J. G., Sun, P. F., Chartier, J., Dougherty, M. E., Liu, P. M., Abrams, G. M., Tu-Chan, A., Ganguly, K., Chang, E. F., Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N Engl J Med 385, 217–27 (2021).10.1056/NEJMoa2027540CrossRefGoogle Scholar
Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., Shenoy, K. V., High-performance brain-to-text communication via handwriting. Nature 593, 249–54 (2021).10.1038/s41586-021-03506-2CrossRefGoogle ScholarPubMed
Willett, F. R., Kunz, E. M., Fan, C., Avansino, D. T., Wilson, G. H., Choi, E. Y., Kamdar, F., Glasser, M. F., Hochberg, L. R., Druckmann, S., Shenoy, K. V., Henderson, J. M., A high-performance speech neuroprosthesis. Nature 620, 1031–6 (2023).10.1038/s41586-023-06377-xCrossRefGoogle ScholarPubMed
Wandelt, S. K., Kellis, S., Bjånes, D. A., Pejsa, K., Lee, B., Liu, C., Andersen, R. A., Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron 110, 1777–87.e3 (2022).10.1016/j.neuron.2022.03.009CrossRefGoogle Scholar
Wandelt, S. K., Bjånes, D. A., Pejsa, K., Lee, B., Liu, C., Andersen, R. A., Representation of internal speech by single neurons in human supramarginal gyrus. Nat Hum Behav, doi: 10.1038/s41562-024-01867-y (2024).CrossRefGoogle Scholar
Naddaf, M., Brain-reading device is best yet at decoding “internal speech.” Nature, doi: 10.1038/d41586-024-01424-7 (2024).CrossRefGoogle Scholar
Hampson, R. E., Song, D., Robinson, B. S., Fetterhoff, D., Dakos, A. S., Roeder, B. M., She, X., Wicks, R. T., Witcher, M. R., Couture, D. E., Laxton, A. W., Munger-Clary, H., Popli, G., Sollman, M. J., Whitlow, C. T., Marmarelis, V. Z., Berger, T. W., Deadwyler, S. A., Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. J Neural Eng 15, 036014 (2018).10.1088/1741-2552/aaaed7CrossRefGoogle ScholarPubMed
Roeder, B. M., Riley, M. R., She, X., Dakos, A. S., Robinson, B. S., Moore, B. J., Couture, D. E., Laxton, A. W., Popli, G., Munger Clary, H. M., Sam, M., Heck, C., Nune, G., Lee, B., Liu, C., Shaw, S., Gong, H., Marmarelis, V. Z., Berger, T. W., Deadwyler, S. A., Song, D., Hampson, R. E., Patterned hippocampal stimulation facilitates memory in patients with a history of head impact and/or brain injury. Front Hum Neurosci 16, 933401 (2022).10.3389/fnhum.2022.933401CrossRefGoogle ScholarPubMed
Ezzyat, Y., Wanda, P. A., Levy, D. F., Kadel, A., Aka, A., Pedisich, I., Sperling, M. R., Sharan, A. D., Lega, B. C., Burks, A., Gross, R. E., Inman, C. S., Jobst, B. C., Gorenstein, M. A., Davis, K. A., Worrell, G. A., Kucewicz, M. T., Stein, J. M., Gorniak, R., Das, S. R., Rizzuto, D. S., Kahana, M. J., Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun 9, 365 (2018).10.1038/s41467-017-02753-0CrossRefGoogle ScholarPubMed
Kragel, J. E., Ezzyat, Y., Lega, B. C., Sperling, M. R., Worrell, G. A., Gross, R. E., Jobst, B. C., Sheth, S. A., Zaghloul, K. A., Stein, J. M., Kahana, M. J., Distinct cortical systems reinstate the content and context of episodic memories. Nat Commun 12, 4444 (2021).10.1038/s41467-021-24393-1CrossRefGoogle ScholarPubMed
Sani, O. G., Yang, Y., Lee, M. B., Dawes, H. E., Chang, E. F., Shanechi, M. M., Mood variations decoded from multi-site intracranial human brain activity. Nat Biotechnol 36, 954–61 (2018).10.1038/nbt.4200CrossRefGoogle ScholarPubMed
Shanechi, M. M., Brain–machine interfaces from motor to mood. Nat Neurosci 22, 1554–64 (2019).10.1038/s41593-019-0488-yCrossRefGoogle ScholarPubMed
Thielen, B., Xu, H., Fujii, T., Rangwala, S. D., Jiang, W., Lin, M., Kammen, A., Liu, C., Selvan, P., Song, D., Mack, W. J., Meng, E., Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 20, 011001 (2023).10.1088/1741-2552/acb086CrossRefGoogle ScholarPubMed
Opie, N. L., John, S. E., Rind, G. S., Ronayne, S. M., Wong, Y. T., Gerboni, G., Yoo, P. E., Lovell, T. J. H., Scordas, T. C. M., Wilson, S. L., Dornom, A., T. Vale, T. O’Brien, J., Grayden, D. B., May, C. N., Oxley, T. J., Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng 2, 907–14 (2018).10.1038/s41551-018-0321-zCrossRefGoogle Scholar
Oxley, T. J., Opie, N. L., John, S. E., Rind, G. S., Ronayne, S. M., Wheeler, T. L., Judy, J. W., McDonald, A. J., Dornom, A., Lovell, T. J. H., Steward, C., Garrett, D. J., Moffat, B. A., Lui, E. H., Yassi, N., Campbell, B. C. V., Wong, Y. T., Fox, K. E., Nurse, E. S., Bennett, I. E., Bauquier, S. H., Liyanage, K. A., van der Nagel, N. R., Perucca, P., Ahnood, A., Gill, K. P., Yan, B., Churilov, L., French, C. R., Desmond, P. M., Horne, M. K., Kiers, L., S. Prawer, S. Davis, M., Burkitt, A. N., Mitchell, P. J., Grayden, D. B., May, C. N., O’Brien, T. J., Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34, 320–7 (2016).10.1038/nbt.3428CrossRefGoogle ScholarPubMed
Mitchell, P., Lee, S. C. M., Yoo, P. E., Morokoff, A., Sharma, R. P., Williams, D. L., MacIsaac, C., Howard, M. E., Irving, L., Vrljic, I., Williams, C., Bush, S., Balabanski, A. H., Drummond, K. J., Desmond, P., Weber, D., Denison, T., Mathers, S., O’Brien, T. J., Mocco, J., Grayden, D. B., Liebeskind, D. S., Opie, N. L., Oxley, T. J., Campbell, B. C. V., Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the Stentrode With Thought-Controlled Digital Switch (SWITCH) study. JAMA Neurol 80, 270–8 (2023).10.1001/jamaneurol.2022.4847CrossRefGoogle Scholar
Macé, E., Montaldo, G., Cohen, I., Baulac, M., Fink, M., Tanter, M., Functional ultrasound imaging of the brain. Nat Methods 8, 662–4 (2011).10.1038/nmeth.1641CrossRefGoogle ScholarPubMed
Norman, S. L., Maresca, D., Christopoulos, V. N., Griggs, W. S., Demene, C., Tanter, M., Shapiro, M. G., Andersen, R. A., Single trial decoding of movement intentions using functional ultrasound neuroimaging. Neuron 109, 1554–66.e4 (2021).10.1016/j.neuron.2021.03.003CrossRefGoogle ScholarPubMed
Griggs, W. S., Norman, S. L., Deffieux, T., Segura, F., Osmanski, B.-F., Chau, G., Christopoulos, V., Liu, C., Tanter, M., Shapiro, M. G., Andersen, R. A., Decoding motor plans using a closed-loop ultrasonic brain–machine interface. Nat Neurosci 27, 196207 (2023).10.1038/s41593-023-01500-7CrossRefGoogle ScholarPubMed
Rabut, C., Norman, S. L., Griggs, W. S., Russin, J. J., Jann, K., Christopoulos, V., Liu, C., Andersen, R. A., Shapiro, M. G., A window to the brain: ultrasound imaging of human neural activity through a permanent acoustic window. bioRxiv [Preprint] (2023). https://doi.org/10.1101/2023.06.14.544094.CrossRefGoogle Scholar
Morrell, M. J., RNS System in Epilepsy Study Group, Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–304 (2011).10.1212/WNL.0b013e3182302056CrossRefGoogle Scholar
Lee, B., Zubair, M. N., Marquez, Y. D., Lee, D. M., Kalayjian, L. A., Heck, C. N., Liu, C. Y., A single-center experience with the NeuroPace RNS system: A review of techniques and potential problems. World Neurosurg 84, 719–26 (2015).10.1016/j.wneu.2015.04.050CrossRefGoogle ScholarPubMed
Levy, R. M., Harvey, R. L., Kissela, B. M., Winstein, C. J., Lutsep, H. L., Parrish, T. B., Cramer, S. C., Venkatesan, L., Epidural electrical stimulation for stroke rehabilitation: Results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil Neural Repair 30, 107–19 (2016).10.1177/1545968315575613CrossRefGoogle ScholarPubMed
Harvey, R. L., Edwards, D., Dunning, K., Fregni, F., Stein, J., Laine, J., Rogers, L. M., Vox, F., Durand-Sanchez, A., Bockbrader, M., Goldstein, L. B., Francisco, G. E., Kinney, C. L., Liu, C. Y., NICHE Trial Investigators, Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke 49, 2138–46 (2018).10.1161/STROKEAHA.117.020607CrossRefGoogle Scholar
Edwards, D. J., Liu, C. Y., Dunning, K., Fregni, F., Laine, J., Leiby, B. E., Rogers, L. M., Harvey, R. L., Electric field navigated 1-Hz rTMS for poststroke motor recovery: The E-FIT randomized controlled trial. Stroke 54, 2254–64 (2023).10.1161/STROKEAHA.123.043164CrossRefGoogle ScholarPubMed
Dawson, J., Liu, C. Y., Francisco, G. E., Cramer, S. C., Wolf, S. L., Dixit, A., Alexander, J., Ali, R., Brown, B. L., Feng, W., L. DeMark, L. Hochberg, R., Kautz, S. A., Majid, A., O’Dell, M. W., Pierce, D., Prudente, C. N., Redgrave, J., Turner, D. L., Engineer, N. D., Kimberley, T. J., Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 397, 1545–53 (2021).10.1016/S0140-6736(21)00475-XCrossRefGoogle ScholarPubMed
Liu, C. Y., Russin, J., Adelson, D. P., Jenkins, A., Hilmi, O., Brown, B., Lega, B., Whitworth, T., Bhattacharyya, D., Schwartz, T. H., Krishna, V., Williams, Z., Uff, C., Willie, J., Hoffman, C., Vandergrift, W. A., Achrol, A. S., Ali, R., Konrad, P., Edmonds, J., Kim, D., Bhatt, P., Tarver, B. W., Pierce, D., Jain, R., Burress, C., Casavant, R., Prudente, C. N., N. D. Engineer, Vagus nerve stimulation paired with rehabilitation for stroke: Implantation experience from the VNS-REHAB trial. J Clin Neurosci 105, 122–8 (2022).10.1016/j.jocn.2022.09.013CrossRefGoogle ScholarPubMed
Dawson, J., Abdul-Rahim, A. H., Kimberley, T. J., Neurostimulation for treatment of post-stroke impairments. Nat Rev Neurol 20, 259–68 (2024).10.1038/s41582-024-00953-zCrossRefGoogle ScholarPubMed
Bowles, S., Hickman, J., Peng, X., Williamson, W. R., Huang, R., Washington, K., Donegan, D., Welle, C. G., Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 110, 2867–85.e7 (2022).10.1016/j.neuron.2022.06.017CrossRefGoogle ScholarPubMed
Grover, S., Wen, W., Viswanathan, V., Gill, C. T., Reinhart, R. M. G., Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 25, 1237–46 (2022).10.1038/s41593-022-01132-3CrossRefGoogle ScholarPubMed
Kreydin, E. I., Gad, P., Gao, B., Liu, C. Y., Ginsberg, D. A., Jann, K., The effect of stroke on micturition associated brain activity: A pilot fMRI study. Neurourology and Urodynamics 39, 2198–205 (2020).10.1002/nau.24473CrossRefGoogle ScholarPubMed
Kreydin, E. I., Abedi, A., Montero, V. S., Morales, L., Jen, R., Perez, L., La Riva, A., Kohli, P., Liu, C. Y., Ginsberg, D. A., Gad, P., Edgerton, V. R., Jann, K., A pilot study of the effect of transcutaneous spinal cord stimulation on micturition-related brain activity and lower urinary tract symptoms after stroke. J Urol 211, 294304 (2024).10.1097/JU.0000000000003776CrossRefGoogle ScholarPubMed
Hastings, S., Zhong, H., Feinstein, R., Zelczer, G., Mitrovich, C., Gad, P., Edgerton, V. R., A pilot study combining noninvasive spinal neuromodulation and activity-based neurorehabilitation therapy in children with cerebral palsy. Nat Commun 13, 5660 (2022).10.1038/s41467-022-33208-wCrossRefGoogle ScholarPubMed
Na, S., Russin, J. J., Lin, L., Yuan, X., Hu, P., Jann, K. B., Yan, L., Maslov, K., Shi, J., Wang, D. J., Liu, C. Y., Wang, L. V., Massively parallel functional photoacoustic computed tomography of the human brain. Nat Biomed Eng 6, 584–92 (2022).Google ScholarPubMed
Agyeman, K. A., Lee, D. J., Russin, J., Kreydin, E. I., Choi, W., Abedi, A., Lo, Y. T., Cavaleri, J., Wu, K., Edgerton, V. R., Liu, C., Christopoulos, V. N., Functional ultrasound imaging of the human spinal cord. Neuron 112, 1710–22.e3 (2024).10.1016/j.neuron.2024.02.012CrossRefGoogle ScholarPubMed
Agyeman, K. A., Lee, D. J., Abedi, A., Sakellaridi, S., Kreydin, E. I., Russin, J., Lo, Y. T., Wu, K., Choi, W., Edgerton, V. R., Liu, C., Christopoulos, V. N., Human spinal cord activation during filling and emptying of the bladder. bioRxiv [Preprint] (2024). https://doi.org/10.1101/2024.02.16.580736.CrossRefGoogle Scholar
Huang, Y. X., Mahler, S., Dickson, M., Abedi, A., Tyszka, J. M., Lo, Y. T., Russin, J., Liu, C., Yang, C., A compact and cost-effective laser-powered speckle visibility spectroscopy (SVS) device for measuring cerebral blood flow. ArXiv, arXiv:2401.16592v2 (2024).10.1117/1.JBO.29.6.067001CrossRefGoogle Scholar

References

Feigin, VL, Vos, T, Nichols, E, Owolabi, MO, Carroll, WM, Dichgans, M, et al. The Global Burden of Neurological Disorders: Translating Evidence Into Policy. Lancet Neurol. 2020;19:255–65.10.1016/S1474-4422(19)30411-9CrossRefGoogle ScholarPubMed
GBD 2017 US Neurological Disorders Collaborators. Burden of Neurological Disorders Across the US from 1990–2017: A Global Burden of Disease Study. JAMA Neurol. 2021;78:165–76.Google Scholar
del, R. Millan, J, Galan, F, Vanhooydonck, D, Lew, E, Philips, J, Nuttin, >M. Asynchronous Non-invasive Brain-actuated Control of an Intelligent Wheelchair. 2009 Annu Int Conf IEEE Eng Med Biol Soc. 2009:3361–4.10.1109/IEMBS.2009.5332828CrossRefM.+Asynchronous+Non-invasive+Brain-actuated+Control+of+an+Intelligent+Wheelchair.+2009+Annu+Int+Conf+IEEE+Eng+Med+Biol+Soc.+2009:3361–4.>Google Scholar
Birbaumer, N, Ghanayim, N, Hinterberger, T, Iversen, I, Kotchoubey, B, Kübler, A, et al. A Spelling Device for the Paralysed. Nature. 1999;398:297–8.10.1038/18581CrossRefGoogle ScholarPubMed
Scherer, R, Muller, GR, Neuper, C, Graimann, B, Pfurtscheller, G. An Asynchronously Controlled EEG-based Virtual Keyboard: Improvement of the Spelling Rate. IEEE Trans Biomed Eng. 2004;51:979–84.10.1109/TBME.2004.827062CrossRefGoogle ScholarPubMed
Sellers, EW, Krusienski, DJ, McFarland, DJ, Vaughan, TM, Wolpaw, JR. A P300 Event-related Potential Brain–Computer Interface (BCI): The Effects of Matrix Size and Inter Stimulus Interval on Performance. Biol Psychol. 2006;73:242–52.10.1016/j.biopsycho.2006.04.007CrossRefGoogle ScholarPubMed
Bensch, M, Karim, AA, Mellinger, J, Hinterberger, T, Tangermann, M, Bogdan, M, et al. Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients. Comput Intell Neurosci. 2007;2007:e71863.CrossRefGoogle ScholarPubMed
Karim, AA, Hinterberger, T, Richter, J, Mellinger, J, Neumann, N, Flor, H, et al. Neural Internet: Web Surfing with Brain Potentials for the Completely Paralyzed. Neurorehabil Neural Repair. 2006;20:508–15.10.1177/1545968306290661CrossRefGoogle ScholarPubMed
Bayliss, JD. Use of the Evoked Potential P3 Component for Control in a Virtual Apartment. IEEE Trans Neural Syst Rehabil Eng. 2003;11:113–16.10.1109/TNSRE.2003.814438CrossRefGoogle Scholar
Leeb, R, Friedman, D, Müller-Putz, GR, Scherer, R, Slater, M, Pfurtscheller, G. Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic. Comput Intell Neurosci. 2007;2007:e79642.10.1155/2007/79642CrossRefGoogle ScholarPubMed
Leeb, R, Lee, F, Keinrath, C, Scherer, R, Bischof, H, Pfurtscheller, G. Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment. IEEE Trans Neural Syst Rehabil Eng. 2007;15:473–82.10.1109/TNSRE.2007.906956CrossRefGoogle ScholarPubMed
del R, Millán J, Rupp, R, Mueller-Putz, G, Murray-Smith, R, Giugliemma, C, Tangermann, M, et al. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Front Neurosci [Internet]. 2010 [cited 2023 Jul 14];4. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2010.00161Google Scholar
Chaudhary, U, Vlachos, I, Zimmermann, JB, Espinosa, A, Tonin, A, Jaramillo-Gonzalez, A, et al. Spelling Interface Using Intracortical Signals in a Completely Locked-in Patient Enabled via Auditory Neurofeedback Training. Nat Commun. 2022;13:1236.10.1038/s41467-022-28859-8CrossRefGoogle Scholar
Saha, S, Mamun, KA, Ahmed, K, Mostafa, R, Naik, GR, Darvishi, S, et al. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci [Internet]. 2021 [cited 2023 Jun 1];15. Available from: https://www.frontiersin.org/articles/10.3389/fnsys.2021.57887510.3389/fnsys.2021.578875CrossRefGoogle ScholarPubMed
Gupta, A, Vardalakis, N, Wagner, FB. Neuroprosthetics: From Sensorimotor to Cognitive Disorders. Commun Biol. 2023;6:117.10.1038/s42003-022-04390-wCrossRefGoogle ScholarPubMed
Kim, GH, Kim, K, Lee, E, An, T, Choi, W, Lim, G, et al. Recent Progress on Microelectrodes in Neural Interfaces. Materials. 2018;11:1995.10.3390/ma11101995CrossRefGoogle ScholarPubMed
Kawala-Sterniuk, A, Browarska, N, Al-Bakri, A, Pelc, M, Zygarlicki, J, Sidikova, M, et al. Summary of Over Fifty Years with Brain-Computer Interfaces – A Review. Brain Sci. 2021;11:43.10.3390/brainsci11010043CrossRefGoogle ScholarPubMed
Mudry, A, Mills, M. The Early History of the Cochlear Implant: A Retrospective. JAMA Otolaryngol Neck Surg. 2013;139:446–53.Google ScholarPubMed
Rubin, DB, Ajiboye, AB, Barefoot, L, Bowker, M, Cash, SS, Chen, D, et al. Interim Safety Profile From the Feasibility Study of the BrainGate Neural Interface System. Neurology. 2023;100:e1177–92.10.1212/WNL.0000000000201707CrossRefGoogle ScholarPubMed
Ranjan, M, Ranjan, N, Deogaonkar, M, Rezai, A. Deep Brain Stimulation for Refractory Depression, Obsessive-Compulsive Disorder and Addiction. Neurol India. 2020;68:S282–7.Google ScholarPubMed
Biran, R, Martin, DC, Tresco, PA. The Brain Tissue Response to Implanted Silicon Microelectrode Arrays is Increased When the Device is Tethered to the Skull. J Biomed Mater Res A. 2007;82:169–78.Google ScholarPubMed
Woeppel, K, Hughes, C, Herrera, AJ, Eles, JR, Tyler-Kabara, EC, Gaunt, RA, et al. Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain–Computer-Interfaces. Front Bioeng Biotechnol [Internet]. 2021 [cited 2023 May 31];9. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2021.75971110.3389/fbioe.2021.759711CrossRefGoogle Scholar
Hochberg, LR, Bacher, D, Jarosiewicz, B, Masse, NY, Simeral, JD, Vogel, J, et al. Reach and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm. Nature. 2012;485:372–5.10.1038/nature11076CrossRefGoogle ScholarPubMed
Neuralink, Musk E. An Integrated Brain–Machine Interface Platform with Thousands of Channels. J Med Internet Res. 2019;21:e16194.Google Scholar
Towle, VL, Pytel, P, Lane, F, Plass, J, Frim, DM, Troyk, PR. Postmortem Investigation of a Human Cortical Visual Prosthesis that was Implanted for 36 years. J Neural Eng. 2020;17:045010.10.1088/1741-2552/ab9d11CrossRefGoogle ScholarPubMed
Ho, E, Hettick, M, Papageorgiou, D, Poole, AJ, Monge, M, Vomero, M, et al. The Layer 7 Cortical Interface: A Scalable and Minimally Invasive Brain–Computer Interface Platform [Internet]. bioRxiv; 2022 [cited 2023 May 31]. p. 2022.01.02.474656. Available from: https://www.biorxiv.org/content/10.1101/2022.01.02.474656v110.1101/2022.01.02.474656CrossRefGoogle Scholar
Precision Neuroscience Begins First-in-Human Study of its Neural Interface Technology [Internet]. financialpost. [cited 2023 Jun 10]. Available from: https://financialpost.com/globe-newswire/precision-neuroscience-begins-first-in-human-study-of-its-neural-interface-technologyGoogle Scholar
Soldozy, S, Young, S, Kumar, JS, Capek, S, Felbaum, DR, Jean, WC, et al. A Systematic Review of Endovascular Stent-Electrode Arrays, A Minimally Invasive Approach to Brain–Machine Interfaces. Neurosurg Focus. 2020;49:E3.10.3171/2020.4.FOCUS20186CrossRefGoogle ScholarPubMed
Oxley, TJ, Yoo, PE, Rind, GS, Ronayne, SM, Lee, CMS, Bird, C, et al. Motor Neuroprosthesis Implanted with Neurointerventional Surgery Improves Capacity for Activities of Daily Living Tasks in Severe Paralysis: First In-human Experience. J NeuroInterventional Surg. 2021;13:102–8.10.1136/neurintsurg-2020-016862CrossRefGoogle ScholarPubMed
Mitchell, P, Lee, SCM, Yoo, PE, Morokoff, A, Sharma, RP, Williams, DL, et al. Assessment of Safety of a Fully Implanted Endovascular Brain–Computer Interface for Severe Paralysis in 4 Patients: The Stentrode with Thought-Controlled Digital Switch (SWITCH) Study. JAMA Neurol. 2023;80:270–8.10.1001/jamaneurol.2022.4847CrossRefGoogle Scholar
Wellman, SM, Eles, JR, Ludwig, KA, Seymour, JP, Michelson, NJ, McFadden, WE, et al. A Materials Roadmap to Functional Neural Interface Design. Adv Funct Mater. 2018;28:1701269.10.1002/adfm.201701269CrossRefGoogle ScholarPubMed
El-Atab, N, Shaikh, SF, Hussain, MM. Nano-scale Transistors for Interfacing with Brain: Design Criteria, Progress and Prospect. Nanotechnology. 2019;30:442001.10.1088/1361-6528/ab3534CrossRefGoogle Scholar
Liu, J, Fu, T-M, Cheng, Z, Hong, G, Zhou, T, Jin, L, et al. Syringe-injectable Electronics. Nat Nanotechnol. 2015;10:629–36.10.1038/nnano.2015.115CrossRefGoogle ScholarPubMed
Dural Venous Sinus Stenting for Idiopathic Intracranial Hypertension: An Updated Review – ClinicalKey [Internet]. [cited 2023 Jun 4]. Available from: https://www-clinicalkey-com.wvu.idm.oclc.org/#!/content/playContent/1-s2.0-S0150986118302025Google Scholar
Skarpaas, TL, Jarosiewicz, B, Morrell, MJ. Brain-responsive Neurostimulation for Epilepsy (RNS® System). Epilepsy Res. 2019;153:6870.10.1016/j.eplepsyres.2019.02.003CrossRefGoogle ScholarPubMed
Brandman, DM, Cash, SS, Hochberg, LR. Review: Human Intracortical Recording and Neural Decoding for Brain Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2017;25:1687–96.Google ScholarPubMed
Sahasrabuddhe, K, Khan, AA, Singh, AP, Stern, TM, Ng, Y, Tadić, A, et al. The Argo: A High Channel Count Recording System for Neural Recording In Vivo. J Neural Eng. 2021;18:015002.10.1088/1741-2552/abd0ceCrossRefGoogle Scholar
Epilepsy | Ad-Tech Medical [Internet]. [cited 2023 Jun 10]. Available from: https://adtechmedical.com/epilepsy#subdural-electrodesGoogle Scholar
Oxley, TJ, Opie, NL, John, SE, Rind, GS, Ronayne, SM, Wheeler, TL, et al. Minimally Invasive Endovascular Stent-Electrode Array for High-fidelity, Chronic Recordings of Cortical Neural Activity. Nat Biotechnol. 2016;34:320–7.10.1038/nbt.3428CrossRefGoogle ScholarPubMed
Zhuang, J, Truccolo, W, Vargas-Irwin, C, Donoghue, JP. Decoding 3-D Reach and Grasp Kinematics From High-Frequency Local Field Potentials in Primate Primary Motor Cortex. IEEE Trans Biomed Eng. 2010;57:1774–84.Google ScholarPubMed
Sharma, G, Friedenberg, DA, Annetta, N, Glenn, B, Bockbrader, M, Majstorovic, C, et al. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia. Sci Rep. 2016;6:33807.10.1038/srep33807CrossRefGoogle Scholar
Branco, MP, Pels, EGM, Sars, RH, Aarnoutse, EJ, Ramsey, NF, Vansteensel, MJ, et al. Brain–Computer Interfaces for Communication: Preferences of Individuals with Locked-in Syndrome. Neurorehabil Neural Repair. 2021;35:267–79.10.1177/1545968321989331CrossRefGoogle ScholarPubMed
Chari, A, Budhdeo, S, Sparks, R, Barone, DG, Marcus, HJ, Pereira, EAC, et al. Brain–Machine Interfaces: The Role of the Neurosurgeon. World Neurosurg. 2021;146:140–7.10.1016/j.wneu.2020.11.028CrossRefGoogle ScholarPubMed
Zhang, S, Tagliati, M, Pouratian, N, Cheeran, B, Ross, E, Pereira, E. Steering the Volume of Tissue Activated with a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study with Heterogeneous Tissue Properties. Front Comput Neurosci. 2020;14:561180.10.3389/fncom.2020.561180CrossRefGoogle ScholarPubMed
Thakor, NV. Translating the Brain–Machine Interface. Sci Transl Med. 2013;5:210ps17-210ps17.10.1126/scitranslmed.3007303CrossRefGoogle ScholarPubMed

References

Kwoh, YS, Hou, J, Jonckheere, EA, Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical Engineering [Internet]. 1988 Feb;35(2):153–60.10.1109/10.1354CrossRefGoogle ScholarPubMed
Clark, MC, Hall, LO, Goldgof, DB, Velthuizen, R, Murtagh, FR, Silbiger, MS. Automatic tumor segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging. 1998 Apr;17(2):187201.10.1109/42.700731CrossRefGoogle ScholarPubMed
Prastawa, M, Bullitt, E, Ho, S, Gerig, G. A brain tumor segmentation framework based on outlier detection*1. Medical Image Analysis. 2004 Sep;8(3):275–83.10.1016/j.media.2004.06.007CrossRefGoogle Scholar
Havaei, M, Dutil, F, Pal, C, Larochelle, H, Jodoin, PM. A convolutional neural network approach to brain tumor segmentation. Lecture Notes in Computer Science. 2016 Jan; 195208.CrossRefGoogle Scholar
Moses, DA, Metzger, SL, Liu, JR, Anumanchipalli, GK, Makin, JG, Sun, PF, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. New England Journal of Medicine. 2021 Jul;385(3):217–27.10.1056/NEJMoa2027540CrossRefGoogle Scholar
Dundar, TT, Yurtsever, I, Pehlivanoglu, MK, Yildiz, U, Eker, A, Demir, MA, et al. Machine learning-based surgical planning for neurosurgery: Artificial intelligent approaches to the cranium. Frontiers in Surgery. 2022 Apr;9.10.3389/fsurg.2022.863633CrossRefGoogle Scholar
Karabacak, M, Margetis, K. Machine learning-based prediction of short-term adverse postoperative outcomes in cervical disc arthroplasty patients. World Neurosurgery [Internet]. 2023 Jun 15 [cited 2023 Dec 10];S1878-8750(23)007969. Available from: https://pubmed.ncbi.nlm.nih.gov/37330003/Google Scholar
McAvoy, M, Prieto, PC, Kaczmarzyk, JR, Fernández, IS, McNulty, J, Smith, T, et al. Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Scientific Reports. 2021 Jul;11(1).10.1038/s41598-021-94733-0CrossRefGoogle ScholarPubMed
Liew, SL, Lo, B, Donnelly, MR, Zavaliangos-Petropulu, Artemis, Jeong, JN, Barisano, G, et al. A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data. 2022 Jun;9(1).10.1038/s41597-022-01401-7CrossRefGoogle ScholarPubMed
Boaro, A, Kaczmarzyk, JR, Kavouridis, VK, Harary, M, Mammi, M, Dawood, H, et al. Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Scientific Reports [Internet]. 2022 Sep 14 [cited 2023 Apr 10];12(1):15462.10.1038/s41598-022-19356-5CrossRefGoogle ScholarPubMed
Su, R, Zhang, D, Liu, J, Cheng, C. MSU-Net: Multi-Scale U-Net for 2D Medical image segmentation. Frontiers in Genetics. 2021 Feb; 12.10.3389/fgene.2021.639930CrossRefGoogle Scholar
Yap, MH, Pons, G, Marti, J, Ganau, S, Sentis, M, Zwiggelaar, R, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE Journal of Biomedical and Health Informatics. 2017 Jul;22(4):1218–26.Google ScholarPubMed
Candemir, S, Jaeger, S, Palaniappan, K, Musco, JP, Singh, RK, Xue, Zhiyun, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Transactions on Medical Imaging. 2013;33(2):577–90.Google ScholarPubMed
Jaeger, S, Karargyris, A, Candemir, S, Folio, L, Siegelman, J, Callaghan, F, et al. Automatic tuberculosis screening using chest radiographs. IEEE Transactions on Medical Imaging. 2013;33(2):233–45.Google ScholarPubMed
Tschandl, P, Rosendahl, C, Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data [Internet]. 2018 Aug;5(1).10.1038/sdata.2018.161CrossRefGoogle ScholarPubMed
Codella, N, Rotemberg, V, Tschandl, P, Celebi, ME, Dusza, S, Gutman, D, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv:190203368 [cs] [Internet]. 2019 Mar 29.Google Scholar
Walsh, J, Othmani, A, Jain, M, Dev, S. Using U-Net Network for efficient brain tumor segmentation in MRI images. Healthcare Analytics. 2022 Aug;100098.10.1016/j.health.2022.100098CrossRefGoogle Scholar
Trebeschi, S, Drago, SG, Birkbak, NJ, Kurilova, I, Cǎlin, AM, Delli Pizzi, A, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of Oncology [Internet]. 2019 Jun;30(6):9981004.10.1093/annonc/mdz108CrossRefGoogle ScholarPubMed
Jiang, LY, Liu, XC, Nejatian, NP, Nasir-Moin, M, Wang, D, Abidin, A, et al. Health system-scale language models are all-purpose prediction engines. Nature [Internet]. 2023 Jun;1–6. Available from: https://www.nature.com/articles/s41586-023-06160-y.Google Scholar

References

Mezger, U., Jendrewski, C., Bartels, M.. Navigation in surgery. Langenbecks Arch Surg. 2013; 398(4): 501–14.10.1007/s00423-013-1059-4CrossRefGoogle ScholarPubMed
Ma, L. and Baowei, F.. Comprehensive review of surgical microscopes: technology development and medical applications. J Biomed Opt. 2021; 26 (1): 010901.10.1117/1.JBO.26.1.010901CrossRefGoogle ScholarPubMed
Michalak, S. M., Rolston, J. D., Lawton, M. T.. Incidence and predictors of complications and mortality in cerebrovascular surgery: national trends from 2007 to 2012. Neurosurgery. 2016; 79 (2): 182–93.10.1227/NEU.0000000000001251CrossRefGoogle ScholarPubMed
Lakomkin, N., Stannard, B., Fogelson, J. L., et al. Comparison of surgical invasiveness and morbidity of adult spinal deformity surgery to other major operations. Spine J. 2021; 21 (11): 1784–92.10.1016/j.spinee.2021.07.013CrossRefGoogle ScholarPubMed
Kelly, P. J.. Stereotactic imaging, surgical planning and computer-assisted resection of intracranial lesions: methods and results. Adv Tech Stand Neurosurg. 1990; 17: 77118.10.1007/978-3-7091-6925-4_3CrossRefGoogle ScholarPubMed
In: Furht, B. (eds). Augmented Reality. Encyclopedia of Multimedia. Springer, Boston, MA (2006).10.1007/0-387-30038-4CrossRefGoogle Scholar
Hyman, I.. Filippo Brunelleschi. Encyclopedia Britannica, April 11, 2023. https://www.britannica.com/biography/Filippo-Brunelleschi (Accessed June 12, 2023).Google Scholar
Steinhaus, H.. Sur la Localisation au Moyen des Rayons X. Comptes Rendus de L’Acad. des Sci. 1938; 206: 1473–5.Google Scholar
Roberts, D. W., Strohbehn, J. W., Hatch, J. F., et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986; 65 (4): 545–9.10.3171/jns.1986.65.4.0545CrossRefGoogle ScholarPubMed
Edwards, P. J., Hawkes, D. J., Hill, D. L., et al. Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J Image Guid Surg. 1995; 1 (3): 172–8.10.1002/(SICI)1522-712X(1995)1:3<172::AID-IGS7>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle ScholarPubMed
Kawamata, T., Iseki, H., Shibasaki, T., et al. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery. 2002; 50 (6): 1393–7.Google ScholarPubMed
Zamorano, L., Vinas, F. C., Buciuc, R., et al. Advanced neurosurgical navigation using a robotic microscope integrated with an infrared-based system. computer-assisted neurosurgery. Springer, Tokyo (1997).Google Scholar
Mascitelli, J. R., Schlachter, L., Chartrain, A. G., et al. Navigation-linked heads-up display in intracranial surgery: early experience. Oper Neurosurg (Hagerstown). 2018; 15 (2): 184–93.Google ScholarPubMed
Fiani, B., Jarrah, R., Griepp, D. W., et al. The role of 3D exoscope systems in neurosurgery: an optical innovation. Cureus. 2021; 13 (6): e15878.Google ScholarPubMed
Guha, D., Alotaibi, N. M., Nguyen, N., et al. Augmented reality in neurosurgery: a review of current concepts and emerging applications. Can J Neurol Sci. 2017; 44 (3): 235–45.10.1017/cjn.2016.443CrossRefGoogle ScholarPubMed
Gerhardt, J., Sollmann, N., Hiepe, P., et al. Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion – evaluation by means of anatomical landmarks. Clin Neurol Neurosurg. 2019; 183: 105387.10.1016/j.clineuro.2019.105387CrossRefGoogle ScholarPubMed
Milgram, P., Takemura, H., Utsumi, A., et al. Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE 2351, Telemanipulator and Telepresence Technologies, (21 December 1995).Google Scholar
Keil, H. and Trapp, O.. Fluoroscopic imaging: new advances. Injury. 2022; 53 Suppl. 3: S815.10.1016/j.injury.2022.05.035CrossRefGoogle ScholarPubMed
Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens. (Accessed June 11, 2023.)Google Scholar
Magic Leap 2. https://www.magicleap.com/magic-leap-2. (Accessed June 11, 2023.)Google Scholar
Nabiyouni, M., Scerbo, S., Bowman, D. A., et al. Relative effects of real-world and virtual-world latency on an augmented reality training task: an AR simulation experiment. Front. ICT 2017; 3: 34.10.3389/fict.2016.00034CrossRefGoogle Scholar
Negwer, C., Hiepe, P., Meyer, B., et al. Elastic fusion enables fusion of intraoperative magnetic resonance imaging data with preoperative neuronavigation data. World Neurosurg. 2020; 142: e223–8.10.1016/j.wneu.2020.06.166CrossRefGoogle ScholarPubMed
Barak, T., Vetsa, S., Nadar, A., et al. Surgical strategies for older patients with glioblastoma. J Neurooncol. 2021; 155 (3): 255–64.Google ScholarPubMed
Bailey, T. and Durrant-Whyte, H.. Simultaneous Localisation and Mapping (SLAM): part II state of the art. IEEE Robotics & Automation Magazine 2006; 13 (3): 108–17.10.1109/MRA.2006.1678144CrossRefGoogle Scholar
Röntgen, W. C.. On a new kind or rays. Journal of the Franklin Institute 1896; 141; 3: 183–91.10.1016/S0016-0032(96)90066-6CrossRefGoogle Scholar
Why has France lost 80,000 hospital beds in 20 years? https://www.connexionfrance.com/article/French-news/Why-has-France-lost-80-000-hospital-beds-in-20-years. (Accessed June 12, 2023.)Google Scholar
Jean, W. C.. Virtual and augmented reality in neurosurgery: the evolution of its application and study designs. World Neurosurg. 2022; 161: 459–64.10.1016/j.wneu.2021.08.150CrossRefGoogle ScholarPubMed

References

Amorim-Leite, R, Remick, M, Welch, W, Abel, TJ. History of the network approach in epilepsy surgery. Neurosurg Clin N Am. 2020;31(3):301–8.10.1016/j.nec.2020.03.011CrossRefGoogle Scholar
Hanjani, K, Fatehi, M, Schmidt, N, Aghakhani, Y, Redekop, GJ. A history of diagnostic investigations in epilepsy surgery. Can J Neurol Sci. 2021;48(6):845–51.Google ScholarPubMed
Reif, PS, Strzelczyk, A, Rosenow, F. The history of invasive EEG evaluation in epilepsy patients. Seizure. 2016;41:191–5.10.1016/j.seizure.2016.04.006CrossRefGoogle ScholarPubMed
Akhoon, N. Precision medicine: a new paradigm in therapeutics. Int J Prev Med. 2021;12:12.10.4103/ijpvm.IJPVM_375_19CrossRefGoogle ScholarPubMed
Brew-Sam, N, Parkinson, A, Lueck, C, et al. The current understanding of precision medicine and personalised medicine in selected research disciplines: study protocol of a systematic concept analysis. BMJ Open. 2022;12(9):e060326.10.1136/bmjopen-2021-060326CrossRefGoogle ScholarPubMed
Feindel, W, Leblanc, R, De Almeida, AN. Epilepsy surgery: historical highlights 1909–2009. Epilepsia. 2009;50(s3):131–51.10.1111/j.1528-1167.2009.02043.xCrossRefGoogle ScholarPubMed
Stone, JL, Hughes, JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30(1):2844.10.1097/WNP.0b013e31827edb2dCrossRefGoogle ScholarPubMed
Yamamoto, T. Recent advancement of technologies and the transition to new concepts in epilepsy surgery. Neurol Med Chir (Tokyo). 2020;60(12):581–93.10.2176/nmc.ra.2020-0197CrossRefGoogle ScholarPubMed
Meador, KJ, Loring, DW, Flanigin, HF. History of epilepsy surgery. J Epilepsy. 1989;2(1):21–5.10.1016/0896-6974(89)90054-6CrossRefGoogle Scholar
Miller, KJ, Fine, AL. Decision-making in stereotactic epilepsy surgery. Epilepsia. 2022;63(11):2782–801.10.1111/epi.17381CrossRefGoogle ScholarPubMed
Mohamed, A, Wyllie, E, Ruggieri, P, et al. Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology. 2001;56(12):1643–9.10.1212/WNL.56.12.1643CrossRefGoogle ScholarPubMed
Morrison, G, Duchowny, M, Resnick, T, et al. Epilepsy surgery in childhood: a report of 79 patients. Pediatr Neurosurg. 2008;18(5–6):291–7.Google Scholar
Paolicchi, JM, Jayakar, P, Dean, P, et al. Predictors of outcome in pediatric epilepsy surgery. Neurology. 2000;54(3):642.10.1212/WNL.54.3.642CrossRefGoogle ScholarPubMed
Prats, AR, Morrison, G, Wolf, AL. Focal cortical resections for the treatment of extratemporal epilepsy in children. Neurosurg Clin N Am. 1995;6(3):533–40.10.1016/S1042-3680(18)30447-9CrossRefGoogle ScholarPubMed
Adelson, PD, Black, PM, Madsen, JR, et al. Use of subdural grids and strip electrodes to identify a seizure focus in children. Pediatr Neurosurg. 1995;22(4):174–80.10.1159/000120898CrossRefGoogle ScholarPubMed
Gonzalez-Martinez, J, Bulacio, J, Alexopoulos, A, Jehi, L, Bingaman, W, Najm, I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323–30.10.1111/j.1528-1167.2012.03672.xCrossRefGoogle ScholarPubMed
Gonzalez-Martinez, J, Vadera, S, Mullin, J, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10 Suppl 2:167–72; discussion 172–3.Google ScholarPubMed
Gonzalez-Martinez, JA. The stereo-electroencephalography: the epileptogenic zone. Journal of Clinical Neurophysiology. 2016;33(6):522–9.10.1097/WNP.0000000000000327CrossRefGoogle ScholarPubMed
Nelson, JH, Brackett, SL, Oluigbo, CO, Reddy, SK. Robotic stereotactic assistance (ROSA) for pediatric epilepsy: a single-center experience of 23 consecutive cases. Children (Basel). 2020;7(8).Google ScholarPubMed
Guerrini, R, Scerrati, M, Rubboli, G, et al. Overview of presurgical assessment and surgical treatment of epilepsy from the Italian League Against Epilepsy. Epilepsia. 2013;54 Suppl 7:3548.10.1111/epi.12308CrossRefGoogle ScholarPubMed
Stone, SSD, Park, EH, Bolton, J, et al. Interictal connectivity revealed by Granger Analysis of stereoelectroencephalography: association with ictal onset zone, resection, and outcome. Neurosurgery. 2022;91(4):583–9.10.1227/neu.0000000000002079CrossRefGoogle ScholarPubMed
Park, EH, Madsen, JR. Granger Causality analysis of interictal iEEG predicts seizure focus and ultimate resection. Neurosurgery. 2018;82(1):99109.10.1093/neuros/nyx195CrossRefGoogle ScholarPubMed
Belohlavkova, A, Jezdik, P, Jahodova, A, et al. Evolution of pediatric epilepsy surgery program over 2000–2017: improvement of care? Eur J Paediatr Neurol. 2019;23(3):456–65.10.1016/j.ejpn.2019.04.002CrossRefGoogle ScholarPubMed
Simon, SL, Telfeian, A, Duhaime, AC. Complications of invasive monitoring used in intractable pediatric epilepsy. Pediatr Neurosurg. 2003;38(1):4752.10.1159/000067555CrossRefGoogle ScholarPubMed
Hader, WJ, Tellez-Zenteno, J, Metcalfe, A, et al. Complications of epilepsy surgery: a systematic review of focal surgical resections and invasive EEG monitoring. Epilepsia. 2013;54(5):840–7.10.1111/epi.12161CrossRefGoogle ScholarPubMed
Rotenberg, K. Bayesian Localization of the Seizure Onset Zone: A Theoretical Framework for Surgical Decision Making. Bachelor’s thesis, Harvard University; 2023.Google Scholar
Hoogteijling, S, Zijlmans, M. Deep learning for epileptogenic zone delineation from the invasive EEG: challenges and lookouts. Brain Comm. 2021;4(1).Google ScholarPubMed
Mirchi, N, Warsi, NM, Zhang, F, et al. Decoding intracranial EEG with machine learning: a systematic review. Front Hum Neurosci. 2022;16:913777.10.3389/fnhum.2022.913777CrossRefGoogle ScholarPubMed
Andrzejak, RG, Schindler, KA, Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;86 4 Pt 2:046206.10.1103/PhysRevE.86.046206CrossRefGoogle ScholarPubMed
Andrzejak, RG, Lehnertz, K, Mormann, F, Rieke, C, David, P, Elger, CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(6 Pt 1):061907.10.1103/PhysRevE.64.061907CrossRefGoogle ScholarPubMed
Jehi, L. Machine learning for precision epilepsy surgery. Epilepsy Currents. 2023;23(2):7883.10.1177/15357597221150055CrossRefGoogle ScholarPubMed
Jacobs, J, Staba, R, Asano, E, et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol. 2012;98(3):302–15.10.1016/j.pneurobio.2012.03.001CrossRefGoogle ScholarPubMed
Munia, TTK, Aviyente, S. Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci Rep. 2019;9(1):12441.10.1038/s41598-019-48870-2CrossRefGoogle ScholarPubMed
Yuste, R, Goering, S, Arcas, BAY, et al. Four ethical priorities for neurotechnologies and AI. Nature. 2017;551(7679):159–63.10.1038/551159aCrossRefGoogle ScholarPubMed
Asplund, M. Accessing the brain with soft deployable electrocorticography arrays. Sci Robot. 2023;8(78):eadg2785.10.1126/scirobotics.adg2785CrossRefGoogle ScholarPubMed
Song, S, Fallegger, F, Trouillet, A, Kim, K, Lacour, SP Deployment of an electrocorticography system with a soft robotic actuator. Sci Robot. 2023;8(78):eadd1002.10.1126/scirobotics.add1002CrossRefGoogle ScholarPubMed

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×