Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-09-30T09:20:43.251Z Has data issue: false hasContentIssue false

5 - Aeolian Processes

from Part II - Connectivity in Process Domains

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Wind transports particles by creep, saltation and suspension, of which saltation dominates and is responsible for aeolian landforms. Transported particles generally must go around objects, so that the connectivity defined by the spatial distribution of objects on the surface controls sediment transport. Four spatial and temporal scales of sediment transport are defined. At gap to patch scales, vegetation typically defines the structural connectivity. Vegetation remains important at landscape to basin scales but geomorphic features also contribute to defining transport corridors, or structural connectivity, at the coarsest scale. Patterns of aeolian transport through time are essentially constrained by structural connectivity at multiple, embedded scales. Functional connectivity is not well developed in the aeolian realm and, because particles do not travel more than one or two saltation hops during a single event, functional connectivity is only a relevant concept at the finest spatial scales. Aeolian transport must be approached from the multiple spatial (gap to basin) and temporal (single event to longer periods) scales that define structural and functional connectivity.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Al-Masrahy, M. A., & Mountney, N. P.. 2015. A classification scheme for fluvial–aeolian system interaction in desert-margin settings. Aeolian Research 17: 6788.10.1016/j.aeolia.2015.01.010CrossRefGoogle Scholar
Anderson, R. S. 1987. A theoretical model for aeolian impact ripples. Sedimentology 34: 943956.10.1111/j.1365-3091.1987.tb00814.xCrossRefGoogle Scholar
Anthony, E. J., & Aagaard, T.. 2020. The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach. Earth-Science Reviews 210: 103334.10.1016/j.earscirev.2020.103334CrossRefGoogle Scholar
Armbrust, D. V., & Retta, A.. 2000. Wind and sandblast damage to growing vegetation. Annals of Arid Zone 39: 273284.Google Scholar
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. Methuen, New York.Google Scholar
Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M., & Jickells, T. D.. 2003. Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters 30: 2296.10.1029/2003GL018518CrossRefGoogle Scholar
Baker, A. R., Weston, K., Kelly, S. D., Voss, M., Streu, P., & Cape, J. N.. 2007. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation. Deep-Sea Research Part I-Oceanographic Research Papers 54: 17041720.10.1016/j.dsr.2007.07.001CrossRefGoogle Scholar
Ballantyne, A. P., Brahney, J., Fernandez, D., Lawrence, C. L., Saros, J., & Neff, J. C.. 2011. Biogeochemical response of alpine lakes to a recent increase in dust deposition in the Southwestern, US. Biogeosciences 8: 26892706.10.5194/bg-8-2689-2011CrossRefGoogle Scholar
Bauer, B. O., Davidson-Arnott, R. G. D., Hesp, P. A., Namikas, S. L., Ollerhead, J., & Walker, I. J.. 2009. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology 105: 106116.10.1016/j.geomorph.2008.02.016CrossRefGoogle Scholar
Belly, P. Y. 1964. Sand Movement by Wind. Technical Memorandum No. 1. U.S. Army Coastal Engineering Research Center, Washington, DC.Google Scholar
Belnap, J., Phillips, S. L., Herrick, J. E., & Johansen, J. R.. 2007. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: Implications for land management. Earth Surface Processes and Landforms 32: 7584.10.1002/esp.1372CrossRefGoogle Scholar
Bogle, R., Redsteer, M. H., & Vogel, J.. 2015. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology 228: 4151.10.1016/j.geomorph.2014.08.023CrossRefGoogle Scholar
Bradley, E. F., & Mulhearn, P. J.. 1983. Development of velocity and shear-stress distributions in the wake of a porous shelter fence. Journal of Wind Engineering and Industrial Aerodynamics 15: 145156.10.1016/0167-6105(83)90185-XCrossRefGoogle Scholar
Brandle, J. R., Hodges, L., & Zhou, X. H.. 2004. Windbreaks in North American agricultural systems. Pages 6578 in Nair, P. K. R., Rao, M. R., and Buck, L. E., editors. New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004. Springer Netherlands, Dordrecht.10.1007/978-94-017-2424-1_5CrossRefGoogle Scholar
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., & Hedin, L. O.. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491497.10.1038/17276CrossRefGoogle Scholar
Charlson, R. J., & Heintzenberg, J.. 1995. Aerosol Forcing of Climate. Wiley, Chichester, New York.Google Scholar
Cornelis, W. M., & Gabriels, D.. 2005. Optimal windbreak design for wind-erosion control. Journal of Arid Environments 61: 315332.10.1016/j.jaridenv.2004.10.005CrossRefGoogle Scholar
Davidson-Arnott, R. G. D., & Law, M. N.. 1990. Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point, Lake Erie. Pages 177200 in Nordstrom, K. F., Psuty, N., & Carter, B., editors. Coastal Dunes: Form and Process. Wiley, New York.Google Scholar
de Vries, S., van Thiel de Vries, J. S. M., van Rijn, L. C., Arens, S. M., & Ranasinghe, R.. 2014. Aeolian sediment transport in supply limited situations. Aeolian Research 12: 7585.10.1016/j.aeolia.2013.11.005CrossRefGoogle Scholar
Dong, Z., Lv, P., Zhang, Z., & Lu, J.. 2014. Aeolian transport over a developing transverse dune. Journal of Arid Land 6: 243254.10.1007/s40333-013-0243-2CrossRefGoogle Scholar
Draut, A. E. 2012. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA. Journal of Geophysical Research: Earth Surface 117: F02022, doi:10.1029/2011JF002329CrossRefGoogle Scholar
Duce, R. A., & Tindale, N. W.. 1991. Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography 36: 17151726.10.4319/lo.1991.36.8.1715CrossRefGoogle Scholar
Edwards, S. R. 1993. Luminescence dating of sand from the Kelso Dunes, California. Geological Society, London, Special Publications 72: 59.10.1144/GSL.SP.1993.072.01.07CrossRefGoogle Scholar
Fecan, F., Marticorena, B., & Bergametti, G.. 1999. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences 17: 149157.Google Scholar
Feng, G., & Sharratt, B.. 2007. Validation of WEPS for soil and PM10 loss from agricultural fields within the Columbia Plateau of the United States. Earth Surface Processes and Landforms 32: 743753.10.1002/esp.1434CrossRefGoogle Scholar
Foken, T. 2006. 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorology 119: 431447.10.1007/s10546-006-9048-6CrossRefGoogle Scholar
Fryberger, S. G., & Dean, G.. 1979. Dune forms and wind regime. A study of global sand seas 1052: 137169.Google Scholar
Fryrear, D. W. 1984. Soil Ridges-Clods and Wind Erosion. Transactions of the Asae 27: 445448.10.13031/2013.32808CrossRefGoogle Scholar
Gillette, D. A. 1974. On the production of soil wind erosion aerosols having the potential for long range transport. Journal des Recherches Atmospheriques 8: 735744.Google Scholar
Gillette, D. A. 1977. Fine particulate emissions due to wind erosion. Transactions of the American Society of Agricultural Engineers 20: 890897.10.13031/2013.35670CrossRefGoogle Scholar
Gillette, D. A. 1988. Threshold friction velocities for dust production for agricultural soils. Journal of Geophysical Research 93: 12645–12662.10.1029/JD093iD10p12645CrossRefGoogle Scholar
Gillette, D. A., & Pitchford, A. M.. 2004. Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite-dominated landscapes. Journal of Geophysical Research-Earth Surface 109: F04003.10.1029/2003JF000031CrossRefGoogle Scholar
Gillette, D. A., Herrick, J. E., & Herbert, G. A.. 2006. Wind characteristics of mesquite streets in the northern Chihuahuan Desert, New Mexico, USA. Environmental Fluid Mechanics 6: 241275.10.1007/s10652-005-6022-7CrossRefGoogle Scholar
Gillette, D. A., Niemeyer, T. C., & Helm, P. J.. 2001. Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa. Journal of Geophysical Research-Atmospheres 106: 18085–18098.10.1029/2000JD900324CrossRefGoogle Scholar
Gillette, D. A., Adams, J., Endo, A., Smith, D., & Kihl, R.. 1980. Threshold velocities for input of soil particles into the air by desert soils. Journal of Geographical Research 85: 56215630.Google Scholar
Gillies, J. A., Nield, J. M., & Nickling, W. G.. 2014. Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkha within a nebkha dune field. Aeolian Research 12: 135141.10.1016/j.aeolia.2013.12.005CrossRefGoogle Scholar
Gillies, J. A., Green, H., McCarley-Holder, G., Grimm, S., Howard, C., Barbieri, N., Ono, D., & Schade, T.. 2015. Using solid element roughness to control sand movement: Keeler Dunes, Keeler, California. Aeolian Research 18: 3546.10.1016/j.aeolia.2015.05.004CrossRefGoogle Scholar
Greeley, R., & Iversen, J. D.. 1985. Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge.10.1017/CBO9780511573071CrossRefGoogle Scholar
Hagen, L. J. 2004. Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields. Environmental Modelling & Software 19: 171176.10.1016/S1364-8152(03)00119-1CrossRefGoogle Scholar
Han, G., Zhang, G., & Dong, Y.. 2007. A model for the active origin and development of source-bordering dunefields on a semiarid fluvial plain: A case study from the Xiliaohe Plain, Northeast China. Geomorphology 86: 512524.10.1016/j.geomorph.2006.10.010CrossRefGoogle Scholar
Haywood, J., & Boucher, O.. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 38: 513543.10.1029/1999RG000078CrossRefGoogle Scholar
Hernández-Calvento, L., Jackson, D. W. T., Medina, R., Hernández-Cordero, A. I., Cruz, N., & Requejo, S.. 2014. Downwind effects on an arid dunefield from an evolving urbanised area. Aeolian Research 15: 301309.10.1016/j.aeolia.2014.06.007CrossRefGoogle Scholar
Herrick, J. E., Van Zee, J. W., Havstad, K. M., Burkett, L. M., & Whitford, W. G.. 2005. Monitoring Manual for Grasslands Shrublands and Savana Ecosysts. Volume 1: Quick Start. USDA-ARS Jornada Experimental Range, Las Cruces, New Mexico.Google Scholar
Hesp, P. 2002. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 48: 245268.10.1016/S0169-555X(02)00184-8CrossRefGoogle Scholar
Houser, C. 2009. Synchronization of transport and supply in beach-dune interaction. Progress in Physical Geography: Earth and Environment 33: 733746.10.1177/0309133309350120CrossRefGoogle Scholar
Houser, C., & Mathew, S.. 2011. Alongshore variation in foredune height in response to transport potential and sediment supply: South Padre Island, Texas. Geomorphology 125: 6272.10.1016/j.geomorph.2010.07.028CrossRefGoogle Scholar
Iversen, J. D., & White, B. R.. 1982. Saltation threshold on Earth, Mars and Venus. Sedimentology 29: 111119.10.1111/j.1365-3091.1982.tb01713.xCrossRefGoogle Scholar
Iversen, J. D., Pollack, J. B., Greeley, R., & White, B. R.. 1976. Saltation threshold on Mars – effect of interparticle force, surface-roughness, and low atmospheric density. Icarus 29: 381393.10.1016/0019-1035(76)90140-8CrossRefGoogle Scholar
Ivester, A. H., & Leigh, D. S.. 2003. Riverine dunes on the coastal plain of Georgia, USA. Geomorphology 51: 289311.10.1016/S0169-555X(02)00240-4CrossRefGoogle Scholar
Karl, J. W., Duniway, M. C., & Schrader, T. S.. 2011. A technique for estimating rangeland canopy-gap size distributions from high-resolution digital imagery. Rangeland Ecology & Management 65: 196207.10.2111/REM-D-11-00006.1CrossRefGoogle Scholar
Kawamura, R. 1951. Study of Sand Movement by Wind. University of California, Berkeley, CA.Google Scholar
Kocurek, G., Carr, M., Ewing, R., Havholm, K. G., Nagar, Y. C., & Singhvi, A. K.. 2007. White sands dune field, New Mexico: age, dune dynamics and recent accumulations. Sedimentary Geology 197: 313331.10.1016/j.sedgeo.2006.10.006CrossRefGoogle Scholar
Kocurek, G., & Havholm, K. G.. 1993. Chapter 16. Eolian sequence stratigraphy-a conceptual framework. Pages 393409 in Posamentier, H. W. and Allen, G. P., editors. Recent Developments in Siliciclastic Sequence Stratigraphy, AAPG Memoir 58. The American Association of Petroleum Geologists, Tulsa, OK.Google Scholar
Kocurek, G., & Lancaster, N.. 1999. Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example. Sedimentology 46: 505515.10.1046/j.1365-3091.1999.00227.xCrossRefGoogle Scholar
Lancaster, N. 1997. Response of eolian geomorphic systems to minor climate change: Examples from the southern Californian deserts. Geomorphology 19: 333347.10.1016/S0169-555X(97)00018-4CrossRefGoogle Scholar
Lawrence, C. R., Neff, J. C., & Farmer, G. L.. 2011. The accretion of aeolian dust in soils of the San Juan Mountains, Colorado, USA. Journal of Geophysical Research 116: F02013.10.1029/2010JF001899CrossRefGoogle Scholar
Li, J. R., Okin, G. S., & Epstein, H. E.. 2009b. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments. Journal of Geophysical Research-Biogeosciences 114. G02003. doi:10.1029/2008JG000903CrossRefGoogle Scholar
Li, J., Okin, G. S., Alvarez, L. J., & Epstein, H. E.. 2009a. Sediment deposition and soil nutrient heterogeneity in two desert grassland ecosystems, southern New Mexico. Plant and Soil 319: 6784.10.1007/s11104-008-9850-7CrossRefGoogle Scholar
Li, J., Okin, G. S., Hartman, L. J., & Epstein, H. E.. 2007. Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85: 317332.10.1007/s10533-007-9142-yCrossRefGoogle Scholar
Li, J., Okin, G. S., Tatarko, J., Webb, N. P., & Herrick, J. E.. 2014. Consistency of wind erosion assessments across land use and land cover types: A critical analysis. Aeolian Research 15: 253260.10.1016/j.aeolia.2014.04.007CrossRefGoogle Scholar
Li, J., Okin, G. S., Herrick, J. E., Belnap, J., Miller, M. E., Vest, K., & Draut, A. E.. 2013. Evaluation of a new model of aeolian transport in the presence of vegetation. Journal of Geophysical Research: Earth Surface 118: 288306.10.1002/jgrf.20040CrossRefGoogle Scholar
Litaor, M. I. 1987. The influence of Eolian dust on the genesis of alpine soils in the front range, Colorado. Soil Science Society of America Journal 51: 142147.10.2136/sssaj1987.03615995005100010031xCrossRefGoogle Scholar
Ludwig, J. A., Tongway, D. J., & Marsden, S. G.. 1999. Stripes, strands or stipples: Modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37: 257273.10.1016/S0341-8162(98)00067-8CrossRefGoogle Scholar
Ludwig, J. A., Bastin, G. N., Chewings, V. H., Eager, R. W., & Liedloff, A. C.. 2007. Leakiness: A new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecological Indicators 7: 442454.10.1016/j.ecolind.2006.05.001CrossRefGoogle Scholar
Ludwig, J. A., Eager, R. W., Bastin, G. N., Chewings, V. H., and Liedloff, A. C.. 2002. A leakiness index for assessing landscape function using remote sensing. Landscape Ecology 17: 157171.10.1023/A:1016579010499CrossRefGoogle Scholar
Ludwig, J. A., Eager, R. W., Liedloff, A. C., Bastin, G. N., & Chewings, V. H.. 2006. A new landscape leakiness index based on remotely sensed ground-cover data. Ecological Indicators 6: 327336.10.1016/j.ecolind.2005.03.010CrossRefGoogle Scholar
Ma, R., Li, J., Ma, Y., Wei, L., & Zhang, Y.. 2020. A wind tunnel study of the seasonal shelter efficiency of deciduous windbreaks. Transactions of the ASABE 63: 913922.10.13031/trans.13782CrossRefGoogle Scholar
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay, N., Prospero, J. M., & Tegen, I.. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles 19. GB4025, doi:10.1029/2004GB002402CrossRefGoogle Scholar
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C. R., Bergametti, G., Bond, T. C., Chen, Y., Cohen, D. D., Herut, B., Kubilay, N., Losno, R., Luo, C., Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R. L., & Tsukuda, S.. 2008. The global distribution of atmospheric phosphorus deposition and anthropogenic impacts. Global Biogeochemical Cycles 22: GB4026.10.1029/2008GB003240CrossRefGoogle Scholar
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C. R., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., Shank, L. M., & Siefert, R. L.. 2009. Atmospheric iron deposition: Global distribution, variability and human perturbations. Annual Reviews of Marine Sciences 1: 245278.10.1146/annurev.marine.010908.163727CrossRefGoogle ScholarPubMed
Marqués, M. A., Psuty, N. P., & Rodriguez, R.. 2001. Neglected effects of Eolian dynamics on artificial beach nourishment: The case of Riells, Spain. Journal of Coastal Research 17: 694704.Google Scholar
Marsham, J. H., Knippertz, P., Dixon, N. S., Parker, D. J., & Lister, G. M. S.. 2011. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophysical Research Letters 38: L16803.10.1029/2011GL048368CrossRefGoogle Scholar
Marticorena, B., & Bergametti, G.. 1995. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. Journal of Geophysical Research 100: 16415–16430.10.1029/95JD00690CrossRefGoogle Scholar
Mayaud, J. R., Wiggs, G. F. S., & Bailey, R. M.. 2016. Characterizing turbulent wind flow around dryland vegetation. Earth Surface Processes and Landforms 41: 14211436.10.1002/esp.3934CrossRefGoogle Scholar
McGlynn, I. O., & Okin, G. S.. 2006. Characterization of shrub distribution using high spatial resolution remote sensing: Ecosystem implications for a former Chihuahuan Desert grassland. Remote Sensing of Environment 101: 554566.10.1016/j.rse.2006.01.016CrossRefGoogle Scholar
Mladenov, N., Sommaruga, R., Morales-Baquero, R., Laurion, I., Camarero, L., Diéguez, M. C., Camacho, A., Delgado, A., Torres, O., Chen, Z., Felip, M., & Reche, I.. 2011. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nature Communications 2: 405.10.1038/ncomms1411CrossRefGoogle ScholarPubMed
Moreno-de las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J.. 2011. Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecological Applications 21: 27932805.10.1890/10-2113.1CrossRefGoogle ScholarPubMed
Muhs, D. R., Roskin, J., Tsoar, H., Skipp, G., Budahn, J. R., Sneh, A., Porat, N., Stanley, J.-D., Katra, I., & Blumberg, D. G.. 2013. Origin of the Sinai–Negev erg, Egypt and Israel: Mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69: 2848.10.1016/j.quascirev.2013.02.022CrossRefGoogle Scholar
Munroe, J. S. 2014. Properties of modern dust accumulating in the Uinta Mountains, Utah, USA, and implications for the regional dust system of the Rocky Mountains. Earth Surface Processes and Landforms 39: 19791988.10.1002/esp.3608CrossRefGoogle Scholar
Munroe, J. S., McElroy, R., O’Keefe, S., Peters, A., & Wasson, L.. 2021. Holocene records of eolian dust deposition from high-elevation lakes in the Uinta Mountains, Utah, USA. Journal of Quaternary Science 36: 6675.10.1002/jqs.3250CrossRefGoogle Scholar
Nordstrom, K. F., & Jackson, N. L.. 1992. Effect of source width and tidal elevation changes on aeolian transport on an estuarine beach. Sedimentology 39: 769778.10.1111/j.1365-3091.1992.tb02152.xCrossRefGoogle Scholar
Nordstrom, K. F., & Hotta, S.. 2004. Wind erosion from cropland in the USA: A review of problems, solutions and prospects. Geoderma 121: 157167.10.1016/j.geoderma.2003.11.012CrossRefGoogle Scholar
Okin, G. S. 2008. A new model for wind erosion in the presence of vegetation. Journal of Geophysical Research-Earth Surface 113: F02S10.10.1029/2007JF000758CrossRefGoogle Scholar
Okin, G. S., & Gillette, D. A.. 2001. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes. Journal of Geophysical Research 106: 96739683.10.1029/2001JD900052CrossRefGoogle Scholar
Okin, G. S., & Painter, T. H.. 2004. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces. Remote Sensing of Environment 89: 272280.10.1016/j.rse.2003.10.008CrossRefGoogle Scholar
Okin, G. S., Murray, B., & Schlesinger, W. H.. 2001a. Degradation of sandy arid shrubland environments: Observations, process modelling, and management implications. Journal of Arid Environments 47: 123144.10.1006/jare.2000.0711CrossRefGoogle Scholar
Okin, G. S., Herrick, J. E., & Gillette, D. A.. 2006. Multiscale controls on and consequences of aeolian processes in landscape change in arid and semiarid environments. Journal of Arid Environments 65: 253275.10.1016/j.jaridenv.2005.06.029CrossRefGoogle Scholar
Okin, G. S., Murray, B., & Schlesinger, W. H.. 2001b. Desertification in an arid shrubland in the southwestern United States: Process modeling and validation. Pages 5370 in Conacher, A., editor. Land Degradation: Papers Selected from Contributions to the Sixth meeting of the International Geographical Union’s Commission on Land Degradation and Desertification, Perth, Western Australia, 20–28 September 1999. Kluwer Academic Publishers, Dordrecht.10.1007/978-94-017-2033-5_4CrossRefGoogle Scholar
Okin, G. S., Mahowald, N., Chadwick, O. A., & Artaxo, P.. 2004. The impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles 18: 10.1029/2003GB002145.10.1029/2003GB002145CrossRefGoogle Scholar
Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J., & Bhattachan, A.. 2018. The interactive role of wind in water in functioning of drylands: What does the future hold? Bioscience 68: 670677.10.1093/biosci/biy067CrossRefGoogle Scholar
Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B. T., Peters, D. P. C., & Fredrickson, E. L.. 2009. Do changes in connectivity explain desertification? Bioscience 59: 237244.10.1525/bio.2009.59.3.8CrossRefGoogle Scholar
Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J., Duce, R. A., Galloway, J. N., Hunter, K. A., Kanakidou, M., Kubilay, N., Prospero, J. M., Sarin, M. M., Surapipith, V., Uematsu, M., & Zhuo, T.. 2011. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron Global Biogeochemical Cycles 25: GB2022.10.1029/2010GB003858CrossRefGoogle Scholar
Page, K. 1971. Riverine source bordering sand dune. Australian Geographer 11: 603605.10.1080/00049187108702599CrossRefGoogle Scholar
Page, K. J., Dare-Edwards, A. J., Owens, J. W., Frazier, P. S., Kellett, J., & Price, D. M.. 2001. TL chronology and stratigraphy of riverine source bordering sand dunes near Wagga Wagga, New South Wales, Australia. Quaternary International 83–85: 187193.10.1016/S1040-6182(01)00039-8CrossRefGoogle Scholar
Painter, T. H., Deems, J., Belnap, J., Hamlet, A. F., Landry, C. C., & Udall, B.. 2010. Response of Colorado River runoff to dust radiative forcing in snow. Proceedings of the National Academy of Science 107: 17125–17130.10.1073/pnas.0913139107CrossRefGoogle ScholarPubMed
Painter, T. H., Barrett, A. P., Landry, C., Neff, J., Cassidy, M. P., Lawrence, C., McBride, K. E., & Farmer, G. L.. 2007. Impact of disturbed desert soils on duration of mountain snowcover. Geophysical Research Letters 34: L12502.10.1029/2007GL030284CrossRefGoogle Scholar
Prospero, J. M. 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. Journal of Geophysical Research-Atmospheres 104: 15917–15927.10.1029/1999JD900072CrossRefGoogle Scholar
Psuty, N. 1996. Coastal foredune development and vertical displacement. Zeitschrift für Geomorphologie. Supplement band 102: 211221.Google Scholar
Raupach, M. R. 1992. Drag and drag partition on rough surfaces. Boundary-Layer Meteorology 60: 375395.10.1007/BF00155203CrossRefGoogle Scholar
Raupach, M. R., Gillette, D. A., & Leys, J. F.. 1993. The effect of roughness elements on wind erosion threshold. Journal of Geophysical Research 98: 30233029.10.1029/92JD01922CrossRefGoogle Scholar
Raupach, M. R., Woods, N., Dorr, G., Leys, J. F., & Cleugh, H. A.. 2001. The entrapment of particles by windbreaks. Atmospheric Environment 35: 33733383.10.1016/S1352-2310(01)00139-XCrossRefGoogle Scholar
Ravi, S., D’Odorico, P., Breshears, D. D., Field, J. P., Goudie, A. S., Huxman, T. E., Li, J., Okin, G. S., Swap, R. J., Thomas, A. D., Van Pelt, R. S., Whicker, J. J., & Zobeck, T. M.. 2011. Aeolian processes and the biosphere. Reviews of Geophysics 49: RG3001.10.1029/2010RG000328CrossRefGoogle Scholar
Rendell, H. M., Clarke, M. L., Warren, A., & Chappell, A.. 2003. The timing of climbing dune formation in southwestern Niger: Fluvio-aeolian interactions and the rôle of sand supply. Quaternary Science Reviews 22: 10591065.10.1016/S0277-3791(03)00026-XCrossRefGoogle Scholar
Sankey, J. B., Caster, J., Kasprak, A., & East, A. E.. 2018a. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA. Aeolian Research 32: 154169.10.1016/j.aeolia.2018.02.004CrossRefGoogle Scholar
Sankey, J. B., Kasprak, A., Caster, J., East, A. E., & Fairley, H. C.. 2018b. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics. Aeolian Research 32: 228245.10.1016/j.aeolia.2018.02.005CrossRefGoogle Scholar
Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., & Whitford, W. G.. 1990. Biological feedbacks in global desertification. Science 247: 10431048.10.1126/science.247.4946.1043CrossRefGoogle ScholarPubMed
Shao, Y., Raupach, M. R., & Findlater, P. J.. 1993. Effect of saltation bombardment on the entrainment of dust by wind. Journal of Geophysical Research 98: 12719–12726.10.1029/93JD00396CrossRefGoogle Scholar
Sherman, D. J., & Lyons, W.. 1994. Beach-state controls on aeolian sand delivery to coastal dunes. Physical Geography 15: 381395.10.1080/02723646.1994.10642524CrossRefGoogle Scholar
Sokolik, I. N., & Toon, O. B.. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381: 681683.10.1038/381681a0CrossRefGoogle Scholar
Sterk, G., Parigiani, J., Cittadini, E., Peters, P., Scholberg, J., & Peri, P.. 2012. Aeolian sediment mass fluxes on a sandy soil in Central Patagonia. Catena 95: 112123.10.1016/j.catena.2012.02.005CrossRefGoogle Scholar
Swap, R., Garstang, M., Greco, S., Talbot, R., & Kallberg, P.. 1992. Saharan dust in the Amazon Basin. Tellus Series B-Chemical and Physical Meteorology 44: 133149.10.3402/tellusb.v44i2.15434CrossRefGoogle Scholar
Thomas, D. S. G., & Wiggs, G. F. S.. 2008. Aeolian system responses to global change: Challenges of scale, process and temporal integration. Earth Surface Processes and Landforms 33: 13961418.10.1002/esp.1719CrossRefGoogle Scholar
Torshizi, M. R., Miri, A., Shahriari, A., Dong, Z., & Davidson-Arnott, R.. 2020. The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran. Journal of Environmental Management 265: 110486.10.1016/j.jenvman.2020.110486CrossRefGoogle ScholarPubMed
Von Kármán, T. 1931. Mechanical Similitude and Turbulence. National Advisory Committee for Aeronautics. https://books.google.co.uk/books?id=ONBCAQAAIAAJ&dq=von+karman&lr=&source=gbs_navlinks_sGoogle Scholar
Walter, B., Gromke, C., Leonard, K. C., Manes, C., and Lehning, M.. 2012. Spatio-temporal surface shear-stress variability in live plant canopies and cube arrays. Boundary-Layer Meteorology 143: 337356.10.1007/s10546-011-9690-5CrossRefGoogle Scholar
Webb, N. P., Okin, G. S., & Brown, S.. 2014. The effect of roughness elements on wind erosion: The importance of surface shear stress distribution. Journal of Geophysical Research-Atmospheres 119: 60666084.10.1002/2014JD021491CrossRefGoogle Scholar
Webb, N. P., Galloza, M. S., Zobeck, T. M., & Herrick, J. E.. 2016. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux. Aeolian Research 20: 4558.10.1016/j.aeolia.2015.11.006CrossRefGoogle Scholar
Webb, N. P., Kachergis, E., Miller, S. W., McCord, S. E., Bestelmeyer, B. T., Brown, J. R., Chappell, A., Edwards, B. L., Herrick, J. E., Karl, J. W., Leys, J. F., Metz, L. J., Smarik, S., Tatarko, J., Van Zee, J. W., & Zwicke, G.. 2020. Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecological Indicators 110: 105881.10.1016/j.ecolind.2019.105881CrossRefGoogle Scholar
Wolfe, S. A., & Nickling, W. G.. 1993. The protective role of sparse vegetation in wind erosion. Progress in Physical Geography: Earth and Environment 17: 5068.10.1177/030913339301700104CrossRefGoogle Scholar
Wolfe, S. A., & Nickling, W. G.. 1996. Shear stress partitioning in sparsely vegetated desert canopies. Earth Surface Processes and Landforms 21: 607619.10.1002/(SICI)1096-9837(199607)21:7<607::AID-ESP660>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle Scholar
Wopfner, H., & Twidale, C. R.. 1988. Formation and age of desert dunes in the Lake Eyre depocentres in central Australia. Geologische Rundschau 77: 815834.10.1007/BF01830187CrossRefGoogle Scholar
Yu, L., Lai, Z., & An, P.. 2013. OSL chronology and paleoclimatic implications of paleodunes in the middle and southwestern Qaidam Basin, Qinghai–Tibetan Plateau. Sciences in Cold and Arid Regions 5: 211219.Google Scholar
Zhang, J., Okin, G. S., Zhou, B., & Karl, J. W.. 2021b. UAV-derived imagery for vegetation structure estimation in rangelands: Validation and application. Ecosphere 12: e03830.10.1002/ecs2.3830CrossRefGoogle Scholar
Zhang, J., Guo, W., Zhou, B., & Okin, G. S.. 2021a. Drone-based remote sensing for research on wind erosion in drylands: Possible applications. Remote Sensing 13: 283.10.3390/rs13020283CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×